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ABSTRACTFORMATION AND EVOLUTION OF BREATHERS IN A CHAIN OFNONLINEAR COUPLED OSCILLATORSG�u�
l�u, HasanM.S
., Department of Physi
sSupervisor: Prof. Dr. Sinan BilikmenJanuary 2001, 93 pages.I study the formation and evolution of 
haoti
 breathers (CB's) on theFermi-Pasta-Ulam os
illator 
hain with quarti
 nonlinearity (FPU-� sys-tem). Starting with most of the energy in a single high frequen
y mode, themode is found to break up on a fast time s
ale into a number of spatiallylo
alized stru
tures whi
h, on a slower time s
ale, 
oales
e into a singlestru
ture, a CB. On a usually longer time s
ale, depending strongly on theenergy, the CB gives up its energy to lower frequen
y modes, approa
hingenergy equipartition among modes. I analyze the behavior, theoreti
ally, us-ing an envelope approximation to the dis
rete 
hain of os
illators. For �xedboundaries, periodi
 nonlinear solutions are found, whi
h are analyzed forlinear stability. The stability analysis indi
ates that, for the usually nar-row equilibrium stru
tures, weakly unstable growth near peak amplitudewould propagate into stable regions, thus not leading to large amplitudee�e
ts. However, broader mode initial 
onditions, whi
h relax toward equi-libria, may break up into symmetries other than that initially imposed. Theiii



stru
tures formed after the fast breakup are found to approximate the un-derlying equilibrium. The stru
tures undergo slow translational motions,and an estimated time for them to 
oales
e into a single 
haoti
 breatherare found to agree with the numeri
ally determined s
aling �B / E�1. Apreviously developed theory of the de
ay of the CB amplitude to approa
hequipartition is modi�ed to expli
itly 
onsider the intera
tion of the breatherwith ba
kground modes. The s
aling to equipartition of Teq / E�2 agreeswith the numeri
al s
aling and gives the 
orre
t order of magnitude of Teq.Keywords: Nonlinear, Os
illator Chain, Breather, FPU, Fermi Pasta Ulam
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�OZL_INEER OLMAYAN OS_ILAT�OR D_IZ_IS_INDE ESAS LOKAL_IZEMODLARIN OLUS�UM ve EVR_IM_IG�u�
l�u, HasanY�uksek Lisans , Fizik B�ol�um�uTez Y�oneti
isi: Prof. Dr. Sinan BilikmenO
ak 2001, 93 sayfa.
Bu tezde lineer olmayan d�ord�un
�u dere
eden Fermi-Pasta-Ulam osilat�ordizisinde (FPU-� sistemi) kaotik esas lokalize modlar�n olu�sum ve evrimiin
elenmi�stir. Y�uksek frekansl� tek bir moda verilen enerjiyle ba�slat�lan sis-tem k�sa bir s�urede �
ok say�da lokalize yap�ya ayr�lm��s, ilerleyen zamanla buyap�lar birle�serek tek bir yap�y� , kaotik esas modu olu�sturmu�stur. Kaotikesas mod ilk enerjiye ba�gl� olarak modlar aras�nda e�spayla�s�ma giderek en-erjisini daha d�u�s�uk frekansl� modlara vermi�stir. Bu davran��s zarf fonksiy-onu yakla�s�m� kullan�larak teorik olarak in
elenmi�stir. Sabit s�n�rlar i�
in li-neer olmayan periyodik �
�oz�umler bulunmu�s ve lineer kararl�l�k in
elenmi�stir.Kararl�l�k analizi genellikle dar denge yap�lar� i�
in y�uksek genlikli karars�zzay�f yap�n�n kararl� b�olgeye do�gru ilerledi�gini ve b�oyle
e y�uksek genlik etk-isine neden olmad��g�n� g�ostermi�stir. Bununla birlikte sistemi e�spayla�s�mag�ot�uren geni�s ilk �sartlar�n daha �on
e �ong�or�ulmemi�s simetrilere d�on�u�sebile
e�gig�ozlemlenmi�stir. Bu d�on�u�s�umden sonra olu�san yap�lar�n sistemi e�spayla�s�mav



yakla�st�rd��g� bulunmu�stur. Tek bir esas lokalize mod olu�sum s�uresinin sis-teme ilk verilen enerjiyle ters orant�l� oldu�gu (�M / E�1) n�umerik olarakbulunmu�s ve teoriyle uyumu tart��s�lm��st�r. Esas lokalize modun e�spayla�s�maindirgenmesiyle ilgili daha �on
e geli�stirilmi�s bir teori, esas modun arkaplanmodlarla etkile�simi g�oz�on�unde tutularak iyile�stirilmi�stir. E�spayla�s�ma gidi�ss�uresinin ise ilk sistem enerjisinin karesiyle ters orant�l� oldu�gu g�ozlenmi�stir(Tep / E�2).Anahtar Kelimeler: Osilat�or Dizisi, Esas Lokalize Mod, FPU, Fermi PastaUlam
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CHAPTER 1INTRODUCTION
Coupled os
illator 
hains form good test systems for investigating energyex
hange among degrees of freedoms [1℄. In parti
ular, the Fermi-Pasta-Ulam (FPU) system, 
onsisting of a set of equal masses 
oupled to nearestneighbors by nonlinear springs, has been extensively studied [1, 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 14, 18, 19℄. Starting with energy initially in a low frequen
ymode, Fermi, Pasta, Ulam [2℄ observed, for low energies, that the os
illatorsdid not relax to the equipartition state, but displayed re
urren
es whi
hwere later explained in terms of beating among the system modes [1, 3℄. Atheoreti
al predi
tion of a threshold to fast equipartition by mode overlap[4℄ was subsequently qualitatively 
on�rmed by studies of energy thresholdsrequired to give approximate equipartition among modes [5, 6, 7℄. A weakerme
hanism that also led to equipartition on a slower times
ale has also beenstudied [8, 9, 10℄. With initial energy in a low-frequen
y mode, it was shownin [9℄ that the resonant intera
tion of a few low frequen
y modes 
an lead tolo
al superperiod beat os
illation that is sto
hasti
, transferring energy to1



high frequen
y modes by di�usion. With in
reasing lo
al energy, there is atransition from exponentially slow transfer to a time s
ale that is inverselyproportional to a power of the energy density.The FPU -� system with quarti
 nonlinearity 
an be approximated,for low-frequen
y mode initial 
onditions, by the mKDV equation, whi
hadmits a soliton solution, that 
an be
ome unstable with in
reasing energy[11℄. This instability roughly 
oin
ides with the 
reation of sto
hasti
 layersin the beat os
illations [9℄. The 
lose 
onne
tion between the developmentof sto
hasti
 layers in beat os
illations and instabilities in nonlinear stru
-tures was also noted for the dis
retized sine-Gordon equation, 
onsisting ofpendula 
oupled by linear springs [12, 13℄. In [12℄, it was numeri
ally foundthat the breakup of a nonlinear stru
ture, starting from a high-frequen
ymode initial 
ondition, o

urred at higher energy and on a slower time s
alethan from energy initially in a low-frequen
y mode.A partial understanding of the in
reased stability 
ame from a series ofanalyses of breather-like stru
tures on dis
rete systems that admitted ex-a
t breather solutions [14, 15, 16, 17, 18, 19℄. High frequen
y mode initial
onditions have symmetry of neighboring os
illators 
lose to that of lo
al-ized exa
t breathers. The resulting dynami
s 
onsists of three stages. Firstthere is an initial �rst stage in whi
h the mode breaks up into a number of2



breather-like stru
tures. Se
ond, on a slower time s
ale, these stru
tures 
o-ales
e into one large unstable stru
ture. These stru
tures have been 
alled
haoti
 breathers (CB) [18℄. Sin
e a single large CB 
losely approximatesa stable breather, the �nal de
ay stage, toward equipartition, 
an be veryslow. This behavior has been observed in os
illator 
hains approximatingthe Klein-Gordon equation with various for
e-laws [15, 16, 17℄ e.g. the dis-
retized sine-Gordon equation [17℄, and, more relevantly for this thesis, theFPU-� model [14, 18, 19℄. In [14℄ and [18℄, the energy was pla
ed in thehighest frequen
y mode with stri
t alternation of the amplitudes from oneos
illator to the next. This 
on�guration is stable up to a parti
ular energyat whi
h a parametri
 instability o

urs, leading to the events des
ribedabove [14, 18℄. However, the nonlinear evolution does not depend on spe-
ial initial 
onditions, but will generi
ally evolve from any high-frequen
ymode initial 
ondition that has predominantly the alternating amplitudesymmetry [19℄. One does not know, in this generi
 situation, whether thereexists any true energy threshold to a
hieve equipartition, although there ap-pears to be some numeri
al eviden
e for su
h a threshold in the dis
retizedsine-Gordon system [12℄. However, as dis
ussed extensively with respe
tto low-frequen
y mode initial 
onditions, the pra
ti
al thresholds refer toobservable time s
ales [9, 10℄. From a phase-spa
e perspe
tive it is intu-itively reasonable that for a large number of os
illators and not too low an
3



initial energy the generi
 set of initial 
onditions will lie in a 
haoti
 layer,but the 
haoti
 motion 
an remain 
lose to a regular orbit for very longtimes [1℄. The s
aling with energy density of the time to equipartition hasbeen estimated for high frequen
y initial 
onditions, from the intera
tion ofbeat modes using a pro
edure developed to 
al
ulate the equipartition timefrom low frequen
y initial 
onditions [20℄. The result gave the numeri
allyobserved s
aling but strongly underestimated the time, whi
h is at leastpartially related to the transient formation of the breather [19℄.
Considerable insight into the behavior of a nonlinear os
illator 
hain,starting from high frequen
y mode initial 
onditions, 
an be obtained by in-trodu
ing an envelope fun
tion for the displa
ements of the os
illators. Theinitial 
onditions for the envelope only 
ontain signi�
ant long wavelengthperturbations. For the envelope fun
tion an expansion is then possible toobtain a nonlinear partial di�erential equation (PDE) whi
h approximatesthe behavior of the dis
rete system [21, 22℄. Low-order expansions of thistype produ
e PDEs that have integrable solutions in the form of envelopesolutions, analogous to the solutions produ
ed from low-frequen
y initial
onditions [21℄. Higher order terms destroy the integrability, but the a
tualdis
retized os
illator 
hains 
an have lo
alized breather solutions whi
h arealso integrable [16, 17℄. Thus we might expe
t the results, obtained from4



higher order expansions, to approximate breather solutions that may, how-ever, be weakly unstable.The envelope fun
tion expansion pro
edure has been applied to the FPU-� system to explore the nonlinear long-wavelength solution, its modulationinstability, the lo
alization into proto-breathers, and their 
oales
en
e intoa single 
haoti
 breather [22℄. These results were mainly limited to thesmall-amplitude nonlinear solution, whi
h therefore limited the range ofappli
ability. The initial breakup of the high frequen
y mode was also
al
ulated only for periodi
 boundary 
onditions, i.e. for the highest modenumber for whi
h the initial envelope fun
tion is uniform. These limitationsled to results that, while qualitatively signi�
ant, do not agree quantitativelywith numeri
al results in the usually explored energy density ranges or withos
illator 
hains with �xed ends [18, 19℄.In the following 
hapters i �rst presented the basi
 equations of the 
hainin os
illator and normal mode forms. I then used expansions to obtain theenvelope equation. Then, in Chaper III, i obtained solutions of the en-velope equations valid for arbitrary amplitude. In Chapter IV i obtainedthe approximate lo
al dispersion for the modulation instability and 
om-pare the results to numeri
al evolution of the dis
rete equations for a rangeof energies and initial periodi
ities of the envelope. Chapter V 
onsiders5




oales
en
e of the protobreathers that are formed in the modulational in-stability pro
ess. In Chapter VI the mode pi
ture of the energy transferme
hanism is modi�ed to spe
i�
ally take into a

ount the beating betweenba
kground low amplitude modes and the breather, to obtain an estimateof the breather de
ay time.
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CHAPTER 2BASIC EQUATION AND INITIAL CONDITIONSThe Hamiltonian fun
tion of the FPU-� model of N os
illators isH = NXi=0 " p2i2 m + Kh2 (qi+1 � qi)2 + Kah4 (qi+1 � qi)4# (2.1)where Kh and Kah are, respe
tively, the harmoni
 and anharmoni
 for
e
onstants. This problem has �xed boundaries p0 = pN+1 = 0, q0 = qN+1 =0. Using Hamilton's equations, the Hamiltonian yields the equations ofmotion of the individual os
illatorsmd2qidt2 = Kh(qi+1+qi�1�2qi)+Kah[(qi+1�qi)3�(qi�qi�1)3℄ i = 1; 2; :::N(2.2)Introdu
ing dimensionless variables t ! tqKh=m, q ! qqKah=(Kh �)expressions (2.1) and (2.2) 
an be rewritten in the form that 
orrespondsto m = Kh = 1.H = NXi=0 " 12 p2i + 12 (qi+1 � qi)2 + �4 (qi+1 � qi)4# (2.3)d2qidt2 = qi+1+ qi�1� 2qi+�[(qi+1� qi)3� (qi� qi�1)3℄ i = 1; 2; :::N (2.4)
7



The dimensionless fa
tor � is introdu
ed to write (2.3) and (2.4) in a stan-dard form whi
h is traditionally used in publi
ations for the FPU-� model.I 
hoose � = 0:1 to 
orrespond to previous papers and thus fa
ilitate 
om-parison with the results of other studies. The 
hoi
e of � res
ales the dimen-sionless variables su
h that the energy of the system and, 
orrespondingly,the Hamiltonian are measured in the units of � K2h=KahThe Hamiltonian fun
tion (2.3) 
onsists of quadrati
 part Hh whi
h de-s
ribes the harmoni
 os
illations and anharmoni
 quarti
 potential, Hah,whi
h is proportional to �. With the help of a 
anoni
al transformation Hh
an be presented in the form of N independent normal modes Pj, QjQj = � 2 
jN + 1�1=2 NXi=1 sin(k i j)qi (2.5)Pj =  2
j(N + 1)!1=2 NXi=1 sin(k i j) pi (2.6)su
h that the linear part of the Hamiltonian be
omesHh = NXj=1 
j2 ( Pj 2 +Qj 2) (2.7)where 
j = 2 sin �12 k j� ; k = �=(N + 1); j = 1; 2; :::N (2.8)The reverse transformation isqi = � 2N + 1�1=2 NXj=1 sin(k i j) Qj
j1=2 (2.9)
8



pi = � 2N + 1�1=2 NXj=1 sin(k i j) 
j1=2 Pj (2.10)Index i is used for fun
tions des
ribing os
illators while j is used to labelthe variables related to the normal modes. Transformations (2.9),(2.10)automati
ally satisfy boundary 
onditions p0 = pN+1 = q0 = qN+1 = 0whi
h are kept �xed.For numeri
al integration initial 
onditions are usually 
hosen su
h thatat t = 0 only one normal mode is ex
ited. If there were no nonlinearintera
tion between the normal modes the energy would be lo
alized in thisinitially ex
ited mode forever. However, due to anharmoni
 
oupling theenergy transfers throughout the spe
trum. The purpose of this thesis isto examine the main physi
al me
hanisms that partake in the pro
esses ofenergy transfer.In order to ex
ite spe
i�
ally one normal mode with the frequen
y 

the displa
ements of the os
illators and their momenta are 
hosen at t = 0in a

ordan
e with (2.9), (2.10). The total energy E is shared betweenkineti
 and potential parts of (2.7) su
h that a fra
tion f is delivered to thekineti
 energy P 2
 (0) = 2 f E= 

 while the rest of the energy is pla
ed inthe potential energy,Q2
(0) = 16�

 �q24�E(1� f)(N + 1) + (N + 1)2 �N � 1� (2.11)Expression (2.11) is 
al
ulated with the help of (2.3) and takes into9



a

ount the anharmoni
 term not in
luded in (2.7). Correspondingly, theinitial displa
ements and velo
ities of the os
illators are as follows:qi(0) =  2 Q2
(0)

(N + 1)!1=2 (�1)i+1 sin� � i nN + 1� (2.12)
_q(0) = pi(0) =  2 P 2
 (0) 

N + 1 !1=2 (�1)i+1 sin� � i nN + 1� (2.13)I will mostly treat the 
ase N = 128 with initially ex
ited mode 
 = 120;however, other variants with di�erent values of N , 
 are also 
onsidered. Iprin
ipally examine 
ases with 
 in the upper part of the spe
trum so thatn = N + 1 � 
 << N + 1. Note that for these 
ases the 
hara
teristi
times of the initially ex
ited modes 
orrespond to a period T ' �, e.g. thefrequen
y 
120 ' 2. In numeri
al 
al
ulations a small fra
tion of the totalenergy (10 per
ent) is usually pla
ed into two satellites 
 � 1 and 
 + 1 tospeed up the initial phase of the relaxation; however, this does not play animportant role in long term behavior of the system.The main parameter whi
h de�nes the rates of the di�erent stages ofrelaxation is the spe
i�
 energy per os
illator E=N . For an intuitive under-standing of this statement one 
an introdu
e new dimensionless fun
tionsqi ! q=~q where ~q = qE=(N + 1). This leads to a slightly modi�ed set ofequations (2.4) with renormalized � ! � [ E=(N + 1) ℄ whi
h leaves the10



R.H.S. of the new initial 
onditions for qi(0) and dqi=dt(0) independent ofE=N and ranged between -1 and 1 for all possible values of N . Althougha dependen
e on N still exists in the initial 
onditions it apparently be-
omes rather weak for large N su
h that the main parameter whi
h de�nesthe time s
ales of the relaxation expli
itly depends on the spe
i�
 initialenergy per os
illator E=N . This general behavior was 
on�rmed in the nu-meri
al 
al
ulations performed for di�erent E=N and N [18, 19℄ . These
al
ulations demonstrated that the long-term dynami
s of relaxation wasessentially independent of N for N >� 100.A typi
al pro�le of initial displa
ements (2.12) is shown in Fig. 2.1 forthe 
ase E = 50, f = 0, 
 = 120, exhibiting the fast variations of qi from oneos
illator to another 
hara
teristi
 of high 
 modes. As in previous studies[21, 22℄, to remove this fast variations i introdu
e the envelope fun
tion i(t) = (�1)i qi(t) whi
h is a slowly varying fun
tion of the number i.The pro�le of the 
omplete envelope fun
tion 
orresponding to Fig. 2.1 isillustrated in Fig. 2.2. The smooth spatial pro�le of  makes possible theuse of a 
ontinuous approximation where the os
illators are des
ribed by the
ontinuous variable x = ai, where a is the latti
e period. Taylor's expansionthen gives (x� a) =  (x) +  x(x)(�a) + (1=2) xx(x) a2 +(1=6) xxx(x)(�a)3 + (1=24) xxxx(x) a4 + ::: (2.14)11



Figure 2.1: Initial displa
ements qi for the �rst 30 os
illators (i = 1; 2 :::30)out of N = 128 in the 
ase E = 50, 
 = 120, n = N +1�
 = 9. The modehas the symmetry that left and right os
illators (with respe
t to the 
entralone) have displa
ements of almost equal amplitude but opposite sign.Substituting (2.14) in (2.4 ) and 
olle
ting terms proportional to the di�er-ent powers of a yields tt + 4  + 16 �  3 + a2 f  xx + � (12   2x + 12  2 xx)g +a4 f (1=12)  xxxx + � (3  2x  xx + 3  2xx + 4  x xxx +  2  xxxx)g+ ::: = 0(2.15)where subs
ripts t and x stand for temporal and spatial derivatives of (x; t). Linear terms with spatial derivatives des
ribe the dispersion (de-penden
e of 
 on e�e
tive wave number �j=(N + 1) in (2.8)). Nonlinear12



Figure 2.2: The plot of the envelope fun
tion  i = (�1)iqi(0) at initial timet = 0, N = 128, 
 = 120. Nine extrema 
orrespond to n = N + 1� 
 = 9.The smooth de
rease of  i from left to right results from the fa
t that innumeri
al simulations a small amount of energy (� 10%) was pla
ed in twonearest neighbor modes 
 = 119 and 
 = 121.terms produ
e a frequen
y shift, whi
h drives a pro
ess of steepening ofthe envelope fun
tion and formation of lo
alized states (CB's), while the ef-fe
t of dispersion leads to the opposite pro
ess of 
attening of the envelopefun
tion. This qualitatively explains why relaxation is a

ompanied by theformation of sharply lo
alized states if energy is initially deposited in thehigh frequen
y part of the spe
trum where the e�e
t of dispersion is small,while only broad nonlinear stru
tures are formed if the energy is initially inthe low frequen
y modes where the dispersion is large.13



CHAPTER 3SOLUTIONS FOR THE ENVELOPE FUNCTIONIn (2.15), negle
ting the terms with a6 or higher , introdu
ing the dimen-sionless variable x! x=a (0 � x � N +1) and assuming a mono
hromati
dependen
e  (x; t) =  (x) 
os! t leads to an equation for  (x) ( where !plays role of the eigenvalue)(�!2 + 4)  +  xx + � ( 12  3 + 9   2x + 9  2 xx) +(1=12)(  xxxx + � (27  2x  xx + 27  2xx + 36  x xxx + 9 2  xxxx)) = 0(3.1)where i have used 
os3 ! t = (3=4) 
os! t + (1=4) 
os 3 ! t with termsproportional to 
os 3 ! t ignored [21, 22℄. This is also known as rotatingwave approximation (RWA). Negle
ting terms proportional to � yields alinear equation for the eigenmodes:(�!2 + 4)  +  xx = 0 (3.2)Solving this equation for  (x) with zero boundary 
onditions at x = 0 andx = N+1 gives N eigenmodes whi
h 
orrespond to the high frequen
y linear14



normal modes of the dis
rete FPU 
hain n(0)(x) =  mn sin qn x (3.3)!2 = 4� q2n; qn = �(N + 1� 
)N + 1 = � nN + 1 (3.4)where n = N + 1 � 
 � N + 1 and  mn �  max; n . Supers
ript (0) isintrodu
ed to indi
ate that (3.3) is a solution to the linearized equation(3.2).The redu
ed (with all terms of order a4 dropped) nonlinear equation(3.1) has exa
t analyti
al solutions,  (x), whi
h are periodi
 fun
tions of x.A subset of these solutions have q = 0 at x = 0; N + 1. These solutions area natural generalization of the linear solutions, for the 
ase when nonlineare�e
ts are important. These envelope fun
tions have the same spatial peri-odi
ity as the 
orresponding linear modes (3.3). However, their pro�les arenot harmoni
 fun
tions of x and the frequen
y of os
illations has a nonlinearshift. Note that the third (and higher) harmoni
s of !, whi
h are ex
ludedfrom 
onsideration due to the RWA, leads to nonharmoni
 time dependen
eof  (x; t). Multiplying (3.1) by  x, and integrating over x yields a �rstintegral (�!2 + 4)  2 +  x2 + � ( 6  4 + 9  2  2x) = C1 (3.5)where all terms of order a4 have been dropped.15



This fun
tion des
ribes a family of solutions whi
h depends on two pa-rameters, C1 and !. Equation (3.5) has been examined in the spe
ial 
asewhere C1 is 
hosen su
h that  x = 0 at  =  max and  =  min [22℄. I
onsider more general 
ases assuming that  x = 0 at  =  max but notusing the se
ond 
ondition that  x = 0 at  =  min (see, for examplesolution (3.3) for n = 1). Assuming that  (x) is normalized to the maxi-mum value  m �  max, and introdu
ing, 
orrespondingly, a new fun
tionf(x) �  (x)= m one 
an rewrite 3.5 in a form whi
h is similar to the energy
onservation law for a unit mass parti
le in an external potential U(f)fx22 + U(f) = 0 (3.6)where fx2 plays role of kineti
 energy while the potential energy isU(f) = � 3 � 2m(1� f 2)( f 2 + C2)(1 + 9 �  2mf 2) (3.7)and the total energy is zero. In transforming from (3.5),(3.6) to (3.7) therelation fx = 0 at f = 1 was used and a new 
onstant C2 = ( 4 � !2 +6 �  2m ) = 6�  2m was introdu
ed, repla
ing C1 = 6 � 4m C2. The graphs ofU(f) are illustrated in Fig. 3.1. for three di�erent values of the 
onstant C2(C2 = �0:9; 0; 0:9). Interse
tions of these graphs with the horizontal lineE = 0 show that in the 
ase of positive C2 (for example, C2 = 0:9) solutions (x) are os
illating fun
tions of x whi
h vary between minimum � m andmaximum  m values. C2 = 0 
orresponds to the spe
ial separatrix solution16



whi
h is represented by the single lo
alized wave (soliton, breather) with (x)! 0 at x! �1 and frequen
y!2B = 4 + 6 �  2m (3.8)

Figure 3.1: Graphs of the e�e
tive potential energy U(f) as a fun
tion off , 0 � f � 1, for three values of the 
onstant of integration C2.In the third 
ase of negative C2 solutions  (x) are varying betweentwo nonzero positive/negative boundaries  max and  min with frequen
y!2 = 4+ 6 � ( 2min +  2max). This third family of solutions is related to the
ase of periodi
 nonzero boundary 
onditions, q1 = qN+1, mentioned above.In parti
ular, when C2 ! � 1, it represents so 
alled � - mode when ea
hsingle os
illator is involved in 
oherent motion where its two neighbors have17



opposite phases and equal amplitudes and, 
orrespondingly, the envelopefun
tion  =  max =  min =  m. In this 
ase the nonlinear frequen
y shiftrea
hes a maximum value !2 = 4 + 12 � 2m (3.9)whi
h 
an be easily obtained from (2.4) by keeping qi+1 = qi�1 = �qi.In order to satisfy boundary 
onditions of �xed zero displa
ements atx = 0 and x = N + 1 the �rst 
ase (positive C2) is required sin
e it isthe only one whi
h periodi
ally passes though the point where  = 0. Thespatial period of these os
illations is given byZ 10 df  dfdx!�1 = �=4 (3.10)Zero boundary 
ondition at x = N + 1 is automati
ally satis�ed if the halfwave length �=2 is a solution to the equation (�=2) n = N + 1, where n isinteger (n = 1; 2:::N) and related to 
, as n = N + 1� 
. The dispersionrelation (3.10) determines the spe
trum of the frequen
ies ! as a fun
tionof n and  m. Substituting fx from (3.6) in (3.10) and using a new variablesin� = f , (3.10) 
an be written in the formI(r;  m) = 2� Z �=20 d�  1 + 9 �  2m sin2 �sin2 � + r2 !1=2 = s6 �  2m �N + 1�n �2(3.11)where i have substituted �=4 = (N + 1)=(2n) on the R.H.S. The fa
torr2 � C2 = ( 4 � !2 + 6 �  2m ) = 6�  2m has been introdu
ed as a positive18



quantity to provide 
onvergen
e of the integral and, thus, to satisfy theboundary 
onditions. The parameter w(n;  m) on the R.H.S. of (3.11)w(n;  m) = 6 �  2m �N + 1�n �2 (3.12)gives the relative e�e
t of the nonlinear frequen
y shift of a given normalmode of integer n, with respe
t to the linear frequen
y shift of that modefrom the upper frequen
y bound. This fa
tor plays an important role innonlinear wave dynami
s, des
ribing the relationship between linear disper-sion and nonlinear e�e
ts. The balan
e of these me
hanisms leads to thespontaneous formation of transient self-
onsistent lo
alized stru
tures withw ' 1, whi
h are observed in almost all numeri
al simulations.The limiting 
ase of weak nonlinearity 
orresponds to values of w � 1.This smallness 
an be balan
ed by the integral in the L.H.S. if r ! 1.Simplifying the integrand in this limit, I(r;  m) ! 1=r, yields a dis
retespe
trum of eigenfrequen
ies of the linear problem!2n = 4 + 6 �  2m � �2 n2(N + 1)2 (3.13)where the small nonlinear 
orre
tion 6 �  2m is added to the linear 
ase(3.4).In the opposite limiting 
ase, w(n;  m) � 1, one should solve the dis-persion relation for the R.H.S. of (3.11) mu
h greater than one. This 
anbe balan
ed by the L.H.S. if r � 1. Asymptoti
ly expanding the L.H.S. for19



r ! 0 yields a logarithmi
 dependen
e on r in the leading approximationwhi
h des
ribes the dependen
e on  m (see, Appendix A)I(r;  max)! 1� ln 16r2 (1 + 9� 2m)!+ 6 q� 2m� ar
sinvuut 9� 2m1 + 9� 2m (3.14)Solving (3.11) for ! yields the spe
trum of the eigenfrequen
ies valid in the
ase of strong nonlinearity!2n = 4+6� 2m8<:1� 161 + 9� 2m exp 24�q6� 2m0�N + 1n �p6 ar
sinvuut 9� 2m1 + 9 � 2m1A359=;(3.15)The fa
tor r2 is given by the se
ond term in 
urly bra
kets. It is exponen-tially small, r2 / exp(�w=�), in the strongly nonlinear 
ase, w � 1. Thespatial pro�les of the nonlinear eigenfun
tions  (x) are determined by theintegral of (3.6), (3.7), having an upper limit given by ar
sin( = m) andzero boundary 
ondition at x = 0 while the se
ond zero boundary 
onditionat x = N + 1 is satis�ed automati
ally sin
e !n is the eigenvalue given bythe relation (3.11).x( ) = 1q6 �  2m Z ar
sin( = m)0 d�  1 + 9 �  2m sin2 �sin2 � + r2 !1=2 0 � x � �=4(3.16)Equation (3.16) de�nes  (x) in 0 � x � �=4. It is symmetri
ally 
ontinuedfrom �=4 to �=2, then antisymmetri
ally re
e
ted from �=2 to �, and thenperiodi
ally 
ontinued over the entire 
hain. The resulting graphs of  n(x)are plotted in Figs. 3.2 and 3.3 together with the pro�les of equivalent linear20



modes (3.3) for typi
al values N = 128; n = 9; � = 0:1 and two amplitudes m = 0:45 and  m = 1:85, respe
tively. These values 
orrespond to weakand strong nonlinearity, w(9;  m) ' 3 and w(9;  m) ' 50, respe
tively.The linear pro�les (3.3) are used for initial 
onditions. In the pro
ess ofrelaxation these initial pro�les might be expe
ted to approa
h the equivalentenvelope solutions (3.16) of the same periodi
ity and total energy. Dueto 
onservation of energy the amplitudes of the envelope solutions (3.16)are higher than the initial values. In the weakly nonlinear 
ase 3.2 thedi�eren
e is small, while in the strongly nonlinear 
ase 3.3 the di�eren
eis large be
ause the nonlinear peaks are mu
h narrower than the initialsinusoidal pro�les. Numeri
al 
al
ulations presented in the next 
haptershow that due to a modulation instability the periodi
ity is broken in thepro
ess of relaxation su
h that the only link between initial and �nal statesis the 
onservation of energy.The periodi
 envelope solution (3.16) with n = 1 looks similar to thesingle breather in an in�nitively long 
hain, whi
h is obtained from (3.16) inthe limit N !1. Putting r = 0 and rearranging the limits of integrationin a

ordan
e with zero boundary 
onditions at in�nity, yields
x(f) = 1q6 �  2m Z �=2ar
sin f d�sin�(1 + 9 �  2m sin2 �)1=2 0 � x < +1(3.17)21



Figure 3.2: Comparison of the weakly nonlinear envelope solution (3.16)(solid line) with the equivalent pro�le of the normal mode (3.3) (dashedline) with energy E = 20 and symmetry n = 9. Sin
e the fa
tor w ' 3 isnot too large , the 
urves are 
lose to ea
h other.For the low amplitude 
ase, 9� 2m � 1, integral (3.17) is simpli�ed giving B(x) =  m 
osh�1(q6 �  m x) (3.18)while in the large amplitude 
ase, 9� 2m � 1, (3.17) des
ribes, asymptoti-
ally, the breather of �nite width d ' 5 (�ve os
illators) B(x) =  m 
oss23 x � �s38 < x < �s38 (3.19)The energy of the envelope solutions is given by equation (B.4). The �rsttwo terms are 
al
ulated at the boundaries and 
an
el ea
h other be
ause of22



Figure 3.3: Comparison of the strongly nonlinear envelope solution (3.16)(solid line) with the equivalent pro�le of the normal mode (3.3) (dashedline) at energy E = 200 and symmetry n = 9. The large value of w ' 50makes the 
urves signi�
antly di�erent.the spatial periodi
ity of the modes. The last three terms in the integrandare ignored be
ause they originate from terms of a4 order in equation 2.15whi
h are not 
onsidered. Substituting (3.5), (3.6) into (B.4), expressing!2 in terms of r2 and transforming the variable of integration as in (3.11)yields an expression for the energyE = 2 n  mp6� Z �=20 d�  1 + 9 �  2m sin2 �sin2 � + r2 !1=2 �
��(3 �  2m sin4 � + 2 sin2 � � 32 �  2m r2� (3.20)
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The integral in (3.20) is simpli�ed and 
al
ulated analyti
ally in twolimiting 
ases. If  m is suÆ
iently high that, w(n;  m)� 1, nonlinear e�e
tsare dominant in 
omparison with the e�e
t of dispersion and a

ording to(3.11), r ! 0. Substituting r = 0 in (3.20) the integral is 
al
ulated exa
tlyand de�nes a fun
tion Z(y) with y = �  2m. The expli
it expression for Z(y)is given by (B.5),(B.6). This fun
tion 
an be further simpli�ed in the limitsof y >> 1 and y << 1 whi
h we 
all, respe
tively, large and small amplitudenonlinear envelopes. In the �rst sub
ase the asymptoti
 expansion of Z(y)yieldsE = 9 � p6 n �16   4m � 23�p�  3m! ; 1� q6 �  2m (3.21)where the  3m term is the next order 
orre
tion to the leading  4m term. Inthis large amplitude regime energy is mostly due to the quarti
 � term in thepotential energy (2.3). The envelope fun
tion and energy are 
on
entratedin n narrow periodi
ally distributed peaks ea
h 
onsisting of 4-5 os
illatorswhile in wide areas between the peaks os
illations are exponentially small.In the se
ond sub
ase of small amplitude, the leading terms in the ex-pansion of Z(y) yieldE = 4 np6 � � m + 4 �  3m� � n=(N + 1)� q6 �  2m � 1 (3.22)where the  3m term is a 
orre
tion to the leading,  m term. The energyis mostly due to the quadrati
 term in the potential energy (2.3). It is24



also lo
alized in n periodi
ally distributed peaks but the width of the peaksand, 
orrespondingly, the number of os
illators in ea
h of them are inverselyproportional to  m. This results in the linear dependen
e on  m in (3.22).If the amplitude  m is suÆ
iently low that q6 �  2m � �n=(N + 1)the os
illations be
ome nearly linear. As in obtaining (3.13) the fa
tor r isnow mu
h greater than one and integral (3.20) 
an be 
al
ulated in the limitr !1 by ignoring the term sin� in 
omparison with r in the denominator.Expression (3.20) yieldsEN + 1 =  2m  1� �2n24(N + 1)2! q6 �  2m � � n=(N + 1)� 1 (3.23)The quadrati
 energy dependen
e on  m again results from the quadrati
term in the potential energy (2.3) with a maximum value of 2  2m in a singleos
illator, and a fa
tor of 1=2 is introdu
ed from the nonuniform pro�le ofthe envelope fun
tion. This regime is equivalent to the dis
reet normal modesolution, whi
h represents initial 
onditions used in numeri
al 
al
ulationsin the 
ase when all energy is pla
ed at t = 0 in the potential energy.
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CHAPTER 4FAST EVOLUTION FROM INITIAL STATESFor most numeri
al studies of os
illator 
hains the initial state imposed onthe system is that of a single linear mode. This state is generally not 
lose toan equilibrium. The initial state rapidly relaxes, governed by the nonlinearequations. The evolution may be in
uen
ed by the underlying stability ofnearby equilibria, but 
annot be analyzed dire
tly as perturbations aroundthose equilibria. It is also possible to prepare the initial 
onditions to be
lose to an equilibrium and 
onsequently to dire
tly analyze linear stability.I therefore study both the linear stability of the envelope solutions withrespe
t to small perturbations, Æ i(x) <<  i(x), and the relaxation from aremote initial state (2.12), (2.13) to nonlinear envelope solutions (3.16).For analysis of non-stationary envelopes, whi
h des
ribe relaxation, in-stability, or breather translational motion, it is 
onvenient to rewrite thebasi
 equation (2.15) in the form of two 
oupled equations for amplitudeq(x; t) and phase �(x; t) whi
h are related to  (x; t) as (x; t) = q(x; t) 
os(! t + �(x; t)) (4.1)26



Substituting (4.1) in (2.15) and 
olle
ting terms proportional to sin(!t +�(x; t)) and 
os(!t+�(x; t)) leads to 
oupled equations for the phase �(x; t)and amplidute q(x; t)q�tt + 2 qt(! + �t) + 2 qx�x + q�xx + 12 �q2qx�x + 3 �q3�xx = 0 (4.2)qtt� (!+�t)2q+4 q+ qxx� q�2x+12 �q3+9 �q(qqx)x� 6 �q3�2x = 0 (4.3)4.1 Linear Analysis Of StabilityEnvelope solutions are fast os
illating fun
tions of time whi
h are sub-je
t to parametri
 (modulation) instability. The instability is driven bythe periodi
 variation of the frequen
y, whi
h appears in the linear equa-tion for a perturbation, due to the nonlinear frequen
y shift 
aused by theunperturbed envelope solution. For the usually applied modal initial 
ondi-tions unstable breakup of modes are observed [18, 19℄. However, numeri
al
al
ulations show that the nonlinear stage of this instability leads to the for-mation of long living self-organized lo
alized stru
tures, 
haoti
 breathers,whi
h appear to be marginally stable with respe
t to a fast modulation in-stability. By investigating the stability of nonlinear equilibria i will improveour understanding of the me
hanism by whi
h they are stabilized. Althoughi am examining periodi
 equilibria (3.16), i will put signi�
ant attention tothe limiting 
ase, w =1 ; r = 0 that 
orresponds to a single breather in anin�nitivly long 
hain of os
illators (N !1).27



A se
ond problem is 
on
erned with the question how many breathersappear after the relatively short time of nonlinear relaxation from the ini-tial state. In this 
ontext my problem with �xed zero boundary 
onditionsis signi�
antly di�erent from the usually applied �-mode initial values forperiodi
 boundary 
onditions. In the periodi
 
ase the �-mode is simulta-neously a normal mode of the linear problem and an exa
t solution to thenonlinear envelope equation (3.16). Relaxation from this equilibrium stateis initiated by a modulation instability, and the wavelength of the fastestgrowing mode is used to estimate the number of breathers generated duringthe nonlinear phase of instability.In the 
ase of zero boundary 
onditions, high frequen
y normal modes(2.12), (2.13) do not satisfy the nonlinear envelope equation (3.5). Whenused as initial 
onditions they relax toward or around a few nearest sta-ble equilibrium solutions (3.16) at t > 0. I expe
t that the linear analysis
ould, at best, only qualitatively des
ribe the evolution of the system. Nev-ertheless, as we shall see, the linear analysis, in 
ombination with numeri
alresults, is quite useful for understanding evolution and quasistability ofstrongly nonlinear stru
tures.Comparing (4.1) to the unperturbed envelope solution  (x; t) =  (x) 
os!t,we see that the unperturbed phase is equal to zero, �0 = 0, while the unper-turbed amplitude is q0(x) =  (x). The frequen
y ! is a 
onstant given by28



(3.8) and determined by the amplitude of the unperturbed solution. Whenthe amplitude is slightly varied, q(x; t) =  (x) + Æq(x; t), the frequen
y ofthe fast nonlinear os
illation is also varied. As ! is taken to be 
onstantthis e�e
t is represented by the time-varying phase, �(x; t) = Æ�(x; t). Thisphase di�eren
e 
an a

umulate leading to large values of Æ�(x; t). However,sin
e equation (4.2) depends on derivatives of Æ�(x; t) but not the phase byitself, it 
an be linearized by 
onsidering the derivatives of Æ�(x; t) as �rstorder 
orre
tions. This yields a system of two 
oupled linear equations2!Æqt +  Æ�tt + 2  x (1 + 6� 2) Æ�x +  (1 + 3 � 2) Æ�xx = 0 (4.4)
Æqtt+((1+9� 2) Æqx)x+(4�!2+36� 2+18�  xx+9� 2x) Æq�2! Æ�t = 0(4.5)I �rst 
onsider the simplest 
ase of 
onstant spatial pro�le of the envelope (x; t) =  m 
os !t, whi
h 
orresponds to �-mode with periodi
 boundary
onditions, whi
h has the highest nonlinear frequen
y shift (3.9) [22, 23℄.This mode is a solution to (3.5) but does not belong to our envelope solutionsbe
ause zero boundary 
onditons are not satis�ed in this 
ase. Setting thespatial derivatives of  (x) equal to zero, (4.4) and (4.5) redu
e to a system of
oupled equations for Æ�(x; t) and Æq(x; t) with 
onstant 
oeÆ
ients. They
an be solved by letting Æq(x; t) / Æ�(x; t) / exp(st + i k x) whi
h gives a29



biqudrati
 equation for s:s4 + 2 [ 36 y+8�k2(1+6 y) ℄ s2 = k2 (1 + 3 y) [ 24 y�k2 (1+9 y)℄ (4.6)where y = � 2m as de�ned in Chapter III.Among the four roots of (4.6) there is an unstable solution for whi
hRe s is positive in two intervals of k. These intervals are; for small k,k < q24 y = (1 + 9 y) , � > 2�q(1 + 9 y)=24 y, and for large k, k >2, � < �. The se
ond interval, is beyond the validity of the 
ontinuousapproximation so i will not 
onsider it. At long wavelength, � must beapriori less than N + 1 in order to satisfy periodi
 boundary 
onditions.Using these inequalities, 2�q(1 + 9 y)=24y < � < N +1, one 
an 
on
ludethat there is a threshold for the modulation instability of the �-mode6 �  2m (N + 1)2�2 > 1 (4.7)Near this threshold the fa
tor 9 y � 1 and has therefore been dropped.Expression (4.7) shows that the �-mode is parametri
ally unstable if thenonlinear parameter (3.12), for n = 1, is greater than one. If (4.7) issatis�ed, there is a most unstable wavenumber km whi
h 
orresponds to themaximum of the growth rate, sm. In the limit of small fm, y � 1, the valuesof km and sm were found in [22℄km = q12�  m; sm = 3� 2m (4.8)30



However, i am mainly interested in the 
ases of intermediate and largeamplitude envelopes. In order to analyze these regimes all terms followingfrom (3.11) are in
luded in (4.6). In the limit of large amplitudes, y � 1,the fastest growing mode has wavenumber and maximum growth ratekm = 1:23; sm = 0:93 q�  m (4.9)In 
ontrast to the 
ase of the low amplitude results in (4.8), km is inde-pendent of the amplitude and sm is a linear fun
tion of  m. Note that thetransition from small to large amplitude takes pla
e at �  2m ' 1=9 that
orresponds, for � = 0:1, to  m ' 1.The modulation instability of the envelope solutions obtained in ChapterIII requires a more 
ompli
ated analysis be
ause the unperturbed fun
tions (x) lead to x-dependent terms in (4.4) and (4.5). Full analysis of theproblem 
an be done on the basis of eigenfun
tions satisfying zero boundary
onditions. I limit my study to instability of nonuniform envelope solutionswith respe
t to short wavelength perturbations whi
h most generally havethe form Æ�(x; t); Æq(x; t) / exp(s t+ i Z x0 k(x0) dx0) (4.10)with k �  x= ; k2 �  xx= , whi
h gives a qualitative understanding ofthe e�e
t of spatial variations. I examine the lo
al stability of the envelopesolutions assuming that the perturbations 4.9 are lo
alized in some area31



of width D, k�1 � D � d, where d�1 '  x= is a typi
al s
ale of theunperturbed solution, and form a wave pa
ket with 
entral wave numberk. The growth rate s is then 
al
ulated as a fun
tion of x and k. Theresult indi
ates what parts of the envelope pro�le  (x) are lo
ally stableor unstable and therefore where the instability 
an o

ur dependending onthe lo
al position of the wave pa
ket in x and the lo
al values of k. Thisapproa
h does not take into a

ount the boundary 
onditions and it is validif the wave pa
ket group velo
ity vgr is small enough, so that vgr=s � d.Following this program i analyze the stability of a single breather in thelimit of small, amplitude, 9 y << 1, and large amplitude, 9y >> 1, using,respe
tively, approximations (3.18 ) or (3.19).For low amplitude from (4.8) for the �-mode i have only values of  msu
h that s is small 
ompared to the frequen
y ! � 2 of the breather.These slowly varying perturbations 
an be treated on the basis of a redu
edform of equations (4.4) and (4.5) with the terms Æ�tt and Æqtt ignored.Moreover, as 
an be shown from (3.6),(3.7) the terms proportional to  2xand   xx are proportional to 6� 4m and therefore small in 
omparison with 2(x) and 
an be negle
ted. Among the small perturbation terms i willkeep the two terms proportional to Æqx and Æ�x be
ause they introdu
e animaginary 
ontribution to the dispersion relation. Substituting the WKBpresentation (4.10) into (4.4), (4.5) and introdu
ing, for the low amplitude32




ase, normalizations k1 ! k = (6 �  2m)1=2, s1 ! s = 6 �  2m allows us toexpress the growth rate in the forms21(k1; x) = 14 !2 ( k21 � 2 i k1q6� mffx) ( 6f 2� 1� k21 +3 i k1q6� mf fx)(4.11)where f(x) =  (x)= m. At x = 0, whi
h 
orresponds to the peak of thebreather, the growth rate, Re s1, is positive for k21 < 6f(0)2� 1 = 5. In this
ase the unstable values of k1 < 2:24 are small and are also out of the rangeof appli
ability of WKB approximation, k1 >> 1. Note that this situationis essentially di�erent from the 
ase of the �-mode envelope where solutionsof the form (4.10) are valid at any k 
ompatible with the periodi
 boundary
onditions (but still, of 
ourse, subje
t to dis
reteness limitations).Small imaginary terms in (4.11) may drive a slow instability with thegrowth rate, Re s1 ' (6� 2m)2 for values of x where fx 6= 0. To illustratethis situation the imaginary and real parts of s1 are plotted as a fun
tionof k1, in Fig. 4.1 at the point where fx is maximum f (max)x = (6�)1=2 m=2and f = 2�1=2. This slow growing mode with s1 ' 0:1 exists in the rangeof wavelengths where both WKB and 
ontinuous approximations 
an bevalid. These two 
onditions 
an be satis�ed simultaneously in the 
ase oflow amplitude while at high amplitudes it is impossible. Although at shortwavelengths the mode is lo
ally unstable there is an additional e�e
t whi
hslows down its growth and may stabilize it. The e�e
t is the 
onve
tion33



of the wave pa
ket in (x; k) spa
e due to expli
it dependen
e of s on xand k. This pro
ess is des
ribed by the equations _x = �Im s=�k; _k =��Im s=�x. As it is seen in Fig. 4.1 the value of Im s is large 
ompared tothe growth rate, for k1 >� 1:5 resulting in a fast drift of the pa
ket awayfrom unstable zone to the tail zone where the driving for
e of instabilityfx is small. Furthemore, for k1 � 1, where Im s <Re s, we have alreadyseen the WKB approximation fails. The 
on
lusion is that the WKB theorygives no 
lear eviden
e that a small amplitude breather is unstable.

Figure 4.1: Dependen
e of the normalized growth rate, Re s1 (solid line)and Im s1 (dashed line) on the wave number k1, for the 
ase of a smallamplitude breather.A similar situation o

urs in the 
ase of high amplitudes, 9 � 2m >> 1.34



Making use of the the analogy with the large amplitude �-mode results in3.2 one 
an expe
t that in this 
ase the typi
al values of s are of the orderof ! ' p6� m so all time derivative terms in (4.2) (4.3) are important. Itleads to 
oupled equations2 s2 Æq +  ( s22 + 2 i kffx � (1=2) k2 f 2 ) Æ� = 0 (4.12)
(s22+3 i kffx+6f 2+3ffx+ (3=2)f 2x � 1� (3=2)k2f 2 ) Æq� 2 s2  Æ� = 0(4.13)where ! is substituted with its limiting value ! ! p6 � m and s is nor-malized as, s2 = s = (6 �  2m)1=2 while the wave ve
tor k is not normalized.Solving equations (4.12),(4.13) for s2, gives four bran
hes of s2 (x; k).I will illustrate these results for the most unstable solution. Cal
ulatings2 (x; k) at the peak of the breather, x = 0, yieldss2 (k) = (1=2)1=2q2 k2 � 7 +pk4 � 22k2 + 49 (4.14)The real and imaginary parts of this solution are shown as a fun
tion ofk in Fig. 4.2. Although the results indi
ate a fast instability for a largeamplitude breather, the intervals of unstable k are out of the range of ap-pli
ability of WKB theory or of the envelope approximation. The longwavelength bran
h of the instability with k < 1:4, is not 
onsistent with35



the WKB approximation while for the bran
h with k > 1:6 the wavelengthof perturbations be
omes 
omparable with the distan
e between os
illators.Solutions with k > � would not be allowed due to the dis
reteness of the
hain. The se
ond derivative term,  xx, 
ontributes to the stability at max-imum amplitude while destabilazing �rst derivative terms are small. In thezone where fx is maximum and, 
orrespondingly, fxx is small, similar tothe low amplitude 
ase, these areas 
an be a sour
e of residual instability,generating waves whi
h then rapidly drift away from the unstable zone.

Figure 4.2: Dependen
e of the normalized growth rate, Re s2 (solid line)and frequen
y, Im s2 (dashed line) on the wave number k around the peakof a large amplitude breather.One qualitatively 
on
ludes that stationary solutions for both low and36



high amplitude breathers are su
h that the width of their pro�les is 
om-parable with the most unstable wave lengths (4.8) (4.9), whi
h stronglyenhan
es their stability.4.2 Numeri
al Observations Of Relaxation Os
illations And SymmetryBreakupSin
e the 
onve
tive 
hara
ter of the instability and restri
tions 
ausedby the 
onditions of appli
ability make WKB analysis quite 
ompli
ated,numeri
al analysis is important for verifying my qualitative 
on
lusions.The numeri
al treatment of stability is based on integration of the 128equations of motion (2.4) for a 128 os
illator 
hain, with initial 
onditionsqi(0) = q(B)i + Æqi; pi(0) = 0. Fun
tions q(B)i des
ribe the unperturbedbreather pro�le and they were 
hosen either from the 
ontinuous model inthe form of approximation (3.18) for  m < 1 or as a breather solution ofthe dis
rete FPU model for  m > 1. Low and high amplitide initial pro�leswere 
entered in the middle of the 
hain at x = 64:5. Large amplitudeinitial pro�les obtained from the dis
rete FPU problem were treated sepa-retely for symmetri
 and antisymmetri
 
on�gurations. In all 
ases small(' 10% ) perturbations with the wave length of the fastest growing modefrom (4.8) or (4.9) were added at t = 0 to speed up the instability. The timeof integration was 
hosen to be 10 times longer then the inverse growth rate37



of the slowest unstable WKB mode 
onsidered above whi
h from (4.11) andthe normalization s
ales as (6� 2m)�2. Results of these 
al
ulations showno signi�
ant time variations of the initial pro�les over a wide range of am-plitudes, 0:1 <  m < 10. In the 
ase of large amplitudes a rather suddende
ay of the symmetri
 breather was observed after a time whi
h was signif-i
antly longer than the times above, so i will not dis
uss the phenomenon inthis 
hapter. For antisymmetri
 
on�gurations this e�e
t was not observed.These numeri
al results 
on�rm stability of the nonlinear envelope solutions(3.16) with n = 1. A single breather in an in�nite system has a shape sim-ilar to envelope solutions (3.16) with n = 1, in the 
ase of high amplitudes,w(n;  m) >> 1, and would also be expe
ted to be stable. In the low am-plitude limit, w(n;  m) < 1, the inequality is equivalent to the 
ondition ofstability of the �-mode (4.7) su
h that the breather would also be stable.The envelope solutions (3.16) with higher numbers of n, n = 2; 3::::, 
onsistof n peaks whose pro�les are similar to single breathers if w(n;  m) >> 1and n is not too high (n < 25� 30). Thus, one 
an expe
t stability of thepeaks with respe
t to short wavelength perturbations of their shape. Forlong wavelength perturbations, a new e�e
t appears when the number ofpeaks per wavelength is signi�
antly larger than one. In this 
ase pertur-bations e�e
tively feel the averaged ( over x ) value of the 
oeÆ
ients in
38



equations (4.4),(4.5). This results in a long wavelength modulation insta-bility, as des
ribed by equation (4.6) for the �-mode, but with avaragedvalues of f 2. The long wavelength perturbations do not 
hange the shapeof individual peaks but lead to the modulation of the peak amplitudes. Inthis 
ase a modulation instability similar to the instability of the �-mode
an be observed in my problem with zero boundary 
onditions. This longwavelength instability is illustrated in Fig. 4.3 and Fig. 4.4 where the en-ergies of os
illators ei are plotted for n = 16 and two initial 
onditions,E = 5 ( m = 0:2) and E = 20 ( m = 0:4), at t = 11800 s and t = 3500 s,respe
tively. Growing perturbations of initially equal amplitudes with thewavelength � = 64 and � = 32 are well des
ribed by the theory of the fastestgrowing mode (4.6) if averaging is taken into a

ount by redu
ing their am-plitudes to  m = 0:1 and  m = 0:2. In these 
ases the nonlinear fa
torw(n;  m) = 0:4; 0:8 so the peaks are not well isolated from ea
h other. Theglobal intera
tion gives rise to a long wavelength modulation instability. Insimilar 
al
ulations at E = 200, 
orresponding to value of w(n;  m) ' 2,where the peaks are well lo
alized and nonintera
ting, an instability wasnot observed. Combining analyti
al and numeri
al results one predi
ts thatthe nonlinear envelope solutions are stable to the modulational instabilityin the range of parameters where the nonlinear fa
tor w(n;  m) > 1.
39



Figure 4.3: Dynami
s of the modulational instability of the periodi
 equi-librium with many peaks (n � 1). The 
urves show the pro�le of thenormalized os
illator energies ei versus i at a time when a long wavelengthmodulational instability is visible. E = 5; n = 16; t = 11800 s; the estimateof the most unstable wavelength, �m = 64, is in a good agreement with theobserved wavelength.
Sin
e the initial 
onditions of mu
h numeri
al work are taken to be nor-mal modes of the linear problem they are di�erent from nonlinear envelopesolutions at the same energy. Normal modes are wider and, therefore, theiramplitudes,  i, are less than the amplitudes of 
orresponding nonlinear so-lutions,  m. If the value of the di�eren
e � =  m �  i is not too large,� = m � 0:4, a relaxation takes pla
e in the form of regular os
illations40



Figure 4.4: Dynami
s of the modulational instability of the periodi
 equi-librium with many peaks (n � 1). The 
urves show the pro�le of thenormalized os
illator energies ei versus i at a time when a long wavelengthmodulational instability is visible. E = 20; n = 16; t = 3500 s; the estimateof the most unstable wavelength, �m = 32, is in a good agreement with theobserved wavelengh.of  (x; t) around the equlibrium solution of the same symmetry of ampli-tude � . If � is large, then the relaxation follows another s
enario inwhi
h  (x; t) os
illates around an envelope solution of a di�erent symmetrywith higher values of n. This pro
ess is more favorable be
ause the equi-librium amplitude of an envelope solution with a higher value of n is lowerand, therefore, 
loser to the initial amplitude at a given energy. A transi-tion from a regular os
illation regime (with 
onservation of symmetry) to a41



Figure 4.5: Snapshots of os
illator energies ei versus os
illator number i atsu

essive times, illustrating the dynami
s of relaxation from an initial statearound the nearest equilibrium state. The dashed line shows the pro�le ofthe equlibrium envelope solution with the same initial energy and symmetry.The 
ase of regular os
illations without breakup of symmetry at low energyE = 0:65; n = 1; pro�les of Ei are shown at t = 0 and t = 1800 s whi
h
orrespond to the initial state and maximum of deviation of the envelopefun
tion from the initial state.breakup regime (with 
hange of n) has a threshold depending on the initialamplitude or, equivalently, the energy of the initial state. The transitionenergy Etr depends on the value of n of an initial normal mode. Numeri
alresults show that the transition energy Etr, starting from a normal mode,in
reases with n, approximately as n2, provided n is not too large. Thisdependen
e 
an be explained qualitatively with the use of the nonlinear42



Figure 4.6: Snapshots of os
illator energies ei versus os
illator number iat su

essive times, illustrating the dynami
s of relaxation from an initialstate around the nearest equilibrium state. Illustration of the symmetrybreaking at higher energy, E = 1:29; n = 1; the two distrubutions shownare the pro�le having initial symmetry at t = 1000 s and the transition tothe symmetry n = 2 at t = 2000 s.parameter w whi
h gives a measure of the di�eren
e between strongly non-linear and almost linear pro�les of the envelope solutions. If w ' 1 thedi�eren
e is of the order of one also, � '  m, whi
h roughly 
orrespondsto the transition from a regular to a breakup regime. From the above itfollows that  tr / n and Etr / n2.These 
on
lusions are illustrated in Fig. 4.5 and Fig. 4.6 where snap-shots of numeri
al results obtained at low energies and n = 1, initially, are43



given at two times. In Fig. 4.5 the 
ase of regular os
illations with n=1and E = 0:65 is shown. The energy of the individual os
illators are plottedversus i, with the equlibrium pro�le marked with a dashed line; the periodof os
illations is T = 4000 s. This initial state is 
lose to the transition tothe breakup regime.

Figure 4.7: The 
ase of the regular os
illations with the initial 
onditionsE = 1; n = 2 at t = 0 and t = 700 s. The dashed 
urve gives the equilibriumpro�le.The 
ase of a symmetry breaking os
illation for n = 1 but higher energyE = 1:29 is shown in Fig. 4.6, where a periodi
 transition to the symmetryn = 2 is observed; the period of os
illation is T ' 4500 s. A similarsituation takes pla
e if the initial normal modes are taken for n = 2, as44



Figure 4.8: The breakup of the initial symmetry n = 2 and transition ton = 4 in the 
ase of E = 10; snapshots 
orrespond to (1) t = 0, (2) t = 200 sand (3) t = 1000 s.shown in Fig. 4.7 and Fig. 4.8. The regime of regular os
illations is shownin Fig. 4.7 at an energy E = 1, with a period of os
illations T = 1350 s.For initial energy E = 10, symmetry breaking is found as illustrated in Fig.4.8. The energy Etr at whi
h regular os
illation regime for n = 2 makes atransition to the symmetry breaking regime, with n = 4 appearing, is aboutEtr ' 2:6 whi
h is in a good agreement with the estimate Etr / n2.
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CHAPTER 5BREATHER COALESCENCE

After a set of 
haoti
 breathers have been formed, on a short time s
ale, by amodulational instability or breakup relaxation, the breathers 
oales
e, on alonger time s
ale, into a single 
haoti
 breather. This pro
ess has been welldo

umented, numeri
ally [14, 18, 19℄, and the pro
ess has been studied inmore detail in [22℄. In fa
t, the physi
s is diÆ
ult to understand 
ompletely,and quantitative 
omparison of theory, as developed in [22℄, did not agreewith the most detailed numeri
al results [19℄. Our approa
h will be to �rstfollow the overall 
al
ulation program from [22℄, but extended to in
ludelarger amplitude breathers where numeri
s 
an be 
onveniently 
arried out;then to examine, numeri
ally, the various assumptions that enter into the
al
ulations to see if theoreti
al estimates 
an be improved.46



5.1 Analyti
al EstimatesThe basi
 physi
al notions are that some number of 
haoti
 envelopebreathers are formed, related to the fastest growing mode of the modula-tional instability, initial 
onditions, and relaxation pro
ess. These breathersare moving, in the manner of their low frequen
y soliton 
ousins, and there-fore 
ollide with one another. Sin
e the breathers are not exa
t nonlinearsolutions to the underlying equations, they inter
hange energy in the inter-a
tions, and also take and lose energy against existing ba
kground modes.In a restri
ted situation, this pro
ess has been des
ribed theoreti
ally [24℄,showing that energy is on average transferred from smaller to larger stru
-tures. The end result would then be a single large stru
ture. To estimatethe time s
ale for the 
oales
en
e, the time s
ale �B is 
onstru
ted as [22℄
�B ' lvB ' 1nB � vB (5.1)where vB is the breather velo
ity, and the mean free path l is related in theusual way to the density of breathers nB and the e�e
tive 
ross-se
tion forabsorption of 
olliding breathers �. The 
al
ulation in [22℄ pro
eeds fromequation (2.15) (without a4 terms) in the form of Hamiltonian equationsfor 	(x; t) and 	�(x; t) introdu
ed through an amplitude fun
tion similar47



to (4.1) but in a 
omplex form (x; t) = 12 �	(x; t)e�i!t +	�(x; t)ei!t� (5.2)Droping the terms with the se
ond time derivatives ( �	 � ! _	) and us-ing the rotating wave approximation (RWA) yields 
anoni
al Hamiltonianequations i! _	 = ÆHÆ	� ; � i! _	� = ÆHÆ	 (5.3)where H is de�ned by H = R Hdx with a Hamiltonian densityH = �12 �j	xj2 � 112 j	xxj2 � 6 � j	j4 + 6 � [j	j2j	xj2 + 14(	2	�2 +	2	�2)℄�(5.4)Equations (5.3) des
ribe slow variation of the envelope and they have theintegrals of motion [24℄H = Z Hdx ; P = � i2 Z (		�x �	�	x) dx ; N = Z j	j2 dx (5.5)the energy, momentum and number of quasi-parti
les, respe
tively. Theseresults are then used to estimate vB in (5.1) from the de�ning quantitiesin (5.5), whi
h is evaluated in [22℄ within the approximation of a smallamplitude traveling solution, with N !1,	(x; t) =  m exp( ikx� i
t )
osh[p6 �  m (x� vB t)℄ (5.6)Expression (5.6) is not an exa
t solution to (5.3) but satis�es these equationsfor a redu
ed Hamiltonian (5.4) in whi
h the se
ond term and last three48



terms are droped. In this approximation 
 is the solution to the dispersionrelation 
 = (3 �=2) 2m � k2=4 while the wave ve
tork = �vB (! + 
) ' �2 vB (5.7)The velo
ity vB plays role of the group velo
ity of the wave pa
ket. Equa-tion (5.7) is equivalent to the usual relationship vB = �
=�k and de�nesk as a fun
tion of vB. The value of vB by itself is not de�ned in this ap-proa
h and is 
onsidered as a free parameter. To de�ne the values of vBan additional argument is used in [22℄, that due to the intera
tion of quasi-parti
les trapped inside the breather quasi-equlibrium values of k and vBare established, for whi
h the Hamiltonian, H = 0. In analogy with the
lassi
al os
illator this statement was 
alled a \virial theorem". Applyingthis theorem vB was found to be a linear fun
tion of the amplitudevB = q�=2  m (5.8)Note that k postulated in (5.7) is not equal to km obtained in (4.8) from thefastest growing mode of the modulational instability. Instead, the redu
edform of the Hamiltonian (5.4) gives (5.6) as an exa
t traveling solution, forwhi
h the virial theorem applied to the integral in (5.5) then gives (5.8)and �nally from (5.7) i have, k = p2�  m, whi
h s
ales like, and iswithin a relatively small numeri
al fa
tor of, km = p12�  m. Continuingthe argument in [22℄ the density of breathers nB, as obtained from the49



modulational instability at small amplitude, isnB ' kmax = 2� ' ( 3 � )1=2  m=3 (5.9)and � is taken from a Born approximation for weak s
attering to haveproportionality� / �Z Uint dx�2 / �Z  1  2 dx�2 / (  2m d )2 /  2m (5.10)Substituting these s
alings in (5.1) leads to the s
aling �B / ��2B where�B = EB=N is the energy density of the breathers. Re
ent numeri
alinvestigations of the time s
ale for 
oales
en
e, in an energy range that iseasily a

essible numeri
ally, produ
ed the s
aling for the time required toobtain a single CB [19℄ �B / ��1 (5.11)in 
ontradi
tion to the small amplitude result (more pre
isely �B / E�1sin
e N was held 
onstant).Sin
e numeri
al treatments mentioned above were mostly done for rela-tively large energies, the low amplitude s
alings (5.8)-(5.10) are not appli
a-ble to this 
ase and have to be extended to high amplitudes. I �rst re
onsiderthe 
on
ept of breather velo
ity for high amplitude. As des
ribed above, theredu
ed equations (5.3) based on the Hamiltonian (5.4) without the se
ondand last three terms, have an exa
t solution 
orresponding to the movingbreather given in (5.6). However, one 
an see from (5.6) that the width of50



the redu
ed breather tends to zero when its amplitude in
reases inde�nitelywhile the full solution in (3.16) for a stationary breather des
ribes a realisti
pro�le whi
h has �nite width at any amplitude. This problem raises thequestions whether a nonredu
ed form of Hamiltonian equations (5.3) admitsmoving breather-like solution or whether the terms, in
luding derivatives,will lead to the solutions with zero vB. To answer these questions i �nd,below, an exa
t solution for a moving breather whi
h satis�es the full a2order envelope equation (2.15).To analyze a moving breather, i will use (4.2), (4.3) and 
hoose solutionsin the form q(x; t) = q(x � u t); �(x; t) = �(x � ut). Derivatives of thesefun
tions with respe
t to their arguments � = x � ut, are introdu
ed as q0and �0. Substituting these forms into (4.2), (4.3) and taking into a

ountthat qt = �u q0; �t = �u �0 , yields two 
oupled ordinary di�erentialequations for � and qq (1 + u2 + 3�q2) �00 + 2q0 (1 + u2 + 6�q2)�0 = 2 u ! q0 (5.12)(1+u2)q00+(4�!2) q+12�q3+9�q(q q0)0+2!u�0q�(�0)2(1+u2+6�q2)q = 0(5.13)Equation (5.12) is linear with respe
t to the �rst and se
ond derivatives of� and therefore has an exa
t solution (without singularity at q = 0)�0 = u !1 + u2 + 3�q2 (5.14)
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Subsituting (5.14) in (5.13), multiplaying by q0 and integrating over � yieldsa �rst integral(1 + u2 + 9�q2) q02 +  4� !2 + !2 u2(1 + u2 + 3�q2)! q2 + 6�q4 = 0 (5.15)where the 
onstant of integration is 
hosen to be zero to provide zero bound-ary 
onditions at in�nity. The frequen
y of the moving breather dependson its amplitude and velo
ity and 
an be obtained from (5.15) applied tothe point � = 0 where the amplitude q(�) rea
hes its maximum, qm!2 = (4 + 6�q2m) 1 + u21 + 3�q2m! (5.16)Making use of this result, (5.15) 
an be rewritten in the form of an energy
onserving Hamiltonian h = q02=2+W where the e�e
tive potential energyW is given byW (q; qm; u) = � 3 � q2(q2m � q2)(1 + 9�q2 + u2)(1 + 3�q2 + u2) "3�q2 + 1� u21 + 3�q2m#(5.17)An analysis of the expression in square bra
kets shows that if the speed ofthe breather is not too high,u < ( 1 + 3 � q2m )1=2 (5.18)the e�e
tive potential energy is negative at 0 � q � qm and graphs of W (q)are similar to the 
urve shown in Fig. 4.1 for the 
ase C1 = 0. Solving for q0from (5.15) and integrating over � yields the breather amplitude q(�) whi
h52



looks similar to the pro�le of the standing breather (3.17). If the inequality(5.18) is not satis�ed, then the e�e
tive potential energy (5.17) be
omespositive in some vi
inity of q = 0, when (1 + 3�q2m)1=2 < u < 1 + 3�q2m; itis positive along the entire interval 0 < q < qm, when 1 + 3�q2m < u. Inboth 
ases there are no traje
tories 
orresponding to breather-like solutionsso equation (5.18) is a ne
essary and suÆ
ient 
ondition for the existan
eof a moving breather with arbitrary amplitude.The new exa
t solution represents a generalization of the previous so-lution (5.6), (5.7) to the 
ase of high amplitude breathers. The importantresult is the dependen
e of k on x and t des
ribed by (5.14). The waveve
tor k = �0 has approximately the same value as given by (5.7) in thetail zone of the breather and sharply de
reases near the peak droppingdown to 2u=(3�q2m). Although the new solution is an exa
t solution to thefull a2-order equation (2.15), the value of velo
ity is a free parameter withsome weak restri
tion (5.18). Similar to the 
al
ulation of vB in the smallamplitude 
ase (5.8), i make use of the virial theorem based on (5.4) toestimate the e�e
t of large amplitudes on breather velo
ity. Expressing 	and 	� in (5.2) in terms of q(�) and �(�) and substituting into (5.4) givesa Hamiltonian density as a fun
tion of q(�) and k(�) � �0(�)H(qm; u; �) = � 12 k2 q2 ( 1+3�q2 ) � 12q02( 1+9�q2) + 3 � q4 (5.19)The se
ond term in (5.4) represents the a4 term (1=24)  xxxx in (2.15). Sin
e53



solutions (5.14) , (5.15) were obtained from a redu
ed a2 version of equation(2.15), this term is not in
luded in (5.19) either. It is possible to evaluatethe �rst integral in (5.5) and formulate the virial theorem, H( qm ; u ) = 0,by using the identity H = Z H d� � Z H dq=q0 (5.20)

Figure 5.1: Dependen
e of the breather velo
ity vB on its amplitude  m,obtained from the virial theorem. The horizontal line shows asymptoti
value of vB and  m !1.The result after some algebra and a numeri
al integration over dq, givesthe velo
ity u � vB as shown in Fig. 5.1. For low amplitude the velo
ity is54



in agreement with (5.8) obtained with the use of (5.6), while for high ampli-tude we see that vB be
omes asymptoti
ally 
onstant. The remaining quan-titives that are required to obtain the s
aling (5.1) at high amplitude areobtained in a straightforward way. Taking the wave number of the fastestgrowing large amplitude mode, from (4.9), we �nd that nB / kmax = 
onst,independent of  m, whi
h is 
onsistent with the asymptoti
 assumption ofvB = 
onst if we admit the above mentioned relationship between k andkm. From the asymptoti
 large amplitude expansion of I, in (3.21), wehave  m / E1=4 (with n independent of  m and rougly half the energyin the proto-breathers). Performing the integration in (5.10) for the highamplitude 
ase when the width of the breather d ' 5 =
onst, we �nd� /  4m / E (5.21)Combining the results of vB and nB independent of initial E, with (5.21),in (5.1), this gives, at the start of the 
oales
en
e, that �B / E�1 I must,however, follow the time evolution of the 
aols
en
e pro
ess until a singlebreather is formed. To do this we note that the time 
onstant is governedby n�1B (dnB=dt) = nB�vB sin
e nB de
reases as E�1B and � in
reases asEB, that is, the total energy in the breathers remains nearly 
onstant, thennB� = 
onst during the 
oales
en
e. As found numeri
ally (see below)vB is relatively 
onstant during this pro
ess, and thus we 
on
lude that55



n�1B (dnB=dt) = 1=� , a 
onstant, during the de
ay. Thus the �nal propor-tionality for the s
aling of 
oales
en
e, assuming EB / E, is�B / E�1 (5.22)Comparing (5.11) with (5.22) we see that the asymptoti
 time s
ale for
oales
en
e has the same energy s
aling as the numeri
al 
oales
en
e timeat intermediate energies. This is somewhat surprising, as the numeri
alresult lies between the low energy and high energy asymptotes.5.2 Numeri
al ResultsTo investigate the validity of my various approximations i perform nu-meri
al 
al
ulations on the dis
rete os
illator 
hain. In this way we notonly 
he
k the approximations that are required to obtain solutions to thenonlinear envelope equations, but also take into a

ount dis
reteness e�e
tswhi
h be
omes in
reasingly important at short wavelengths. I �rst enquireif the de
ay is 
hara
terized by a single time 
onstant, i.e. if the total num-ber of breathers NB obeys (1 = NB)(dNB = dt) = 1 = � , a 
onstant. Takingtypi
al 
ases of initial energy E = 20 ; 50 in mode 
 = 120, i plot lnNB vst, in Fig. 5.2 and Fig. 5.3, respe
tively. After an initial short period of themodulational instability, the resulting de
ays are straight line, indi
atingthe 
onstan
y of � . 56



Figure 5.2: Numeri
al dependen
es of the number of breathers, lnNB(t),versus time. The straight line 
urves indi
ate the 
onstan
y of the de
aytime � during the 
oales
en
e from 8-12 breathers to two breathers. The�nal 
oales
en
e to one breather has less statisti
al a

ura
y. Initial energyE = 20; n = 9.This 
onstan
y of � in the de
ay pro
ess was found to hold well for initialenergies 20 � E � 100, whi
h is a typi
al intermediate energy range. Athigher energies there is a somewhat longer time for the �nal 
oales
en
efrom two breathers to one. Using results like those in Fig. 5.2 and 5.3 theresults in Fig. 5.4 are obtained, in the range 20 � E � 250. A straight linegives a power law �t to the 
oales
en
e time �B vs energy, with a best �tgiving �B / E�1:12. This is almost the same as the s
aling of �B / E�1:19in [19℄ using a somewhat more qualitative 
riterion for �B. Note that �B is57



Figure 5.3: Numeri
al dependen
es of the number of breathers, lnNB(t),versus time. The straight line 
urves indi
ate the 
onstan
y of the de
aytime � during the 
oales
en
e from 8-12 breathers to two breathers. The�nal 
oales
en
e to one breather has less statisti
al a

ura
y. Initial energyE = 50; n = 9not the same as the time 
onstant � . Typi
ally there are 8-9 initial proto-breathers whi
h 
oales
e, with the time �B being the time ne
essary fora single 
haoti
 breather to be established. Sin
e in all 
ases the initial
onditions have most of the energy in mode 120, the 8-9 initial peaks tendsto be a strong initializing e�e
t for the proto-breathers, as already dis
ussedin Chapter IV.A further 
on�rmation of our pi
ture of the 
oales
en
e pro
ess is seen inFig.5.5 and Fig. 5.6. In Fig. 5.5, for the 
ase of E = 20, the motion of the58



Figure 5.4: Numeri
al results illustrating the dependen
e of the de
ay timeln �B versus initial energy lnE obtained from results at various energies asdes
ribed in Fig. 5.2, 5.3.largest peak is followed. During the initial stage of proto-breather formationthe motion is not well de�ned as early unstable motion and 
ollisions donot 
onserve a single proto-breather having the maximum amplitude. Attime of 104 s the largest breather is established and grows in energy withasso
iated in
reasing velo
ity. The velo
ityat relatively large amplitude then remains fairly 
onstant in the range2� 104 s � t � 4� 104 s, after whi
h time Fig. 5.2 indi
ates the existan
eof a single dominant breather. As seen in Fig. 5.6 the energy of the largestbreather is 
ontinuing to grow, statisti
ally, during this time. For 4 � 10459



Figure 5.5: Time dependen
e of the os
illator number imax de�ned as theposition of the os
illator having a maximum energy in 
omparison with allother os
illators at a given time t. After 104 s, when a largest breather isestablished, it shows the position of that breather.s � t � 105 s, in Fig. 5.5 the single 
haoti
 breather gradually slows downin a somewhat uneven fasion. The explanation of this e�e
t is not withinthe envelope theory but 
an be quantitatevely understood by two e�e
ts,the well known pinning e�e
t due to the dis
reteness [18℄, and the 
ontinualintera
tion with ba
kground modes 
ontaining a total energy of the orderof the breather energy. As seen in Fig. 5.6, during this period the mainbreather energy is growing slightly. The breather is taking energy from highfrequen
y modes with similar symmetry and giving energy to low frequen
y60



Figure 5.6: Time dependen
e of the maximum energy eimax of the os
illatorsdes
ribed in Fig. 5.5. After the largest breather is established it 
orrespondsto the energy of the os
illator at the peak of the breather.modes that do not have this symmetry. As des
ribed previously [19℄ andwill also be developed in Chapter VI, the breather will de
ay at longertimes, as energy 
ontinues to be transferred to low frequen
y modes andequipartition is approa
hed. Similar dynami
s o

urs at higher energies,but more rapidly so that the phenomena are not as 
learly observed.
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CHAPTER 6BREATHER DECAYIn the usual pi
ture of breather stability, the physi
al me
hanism by whi
hthe breather loses stability is that the breather frequen
y be
omes resonantwith a linear normal mode [15, 16, 17℄. This explanation is not dire
tlyappli
able to my problem as the breather frequen
y is higher than the high-est mode; e.g. for E = 50 ( � = 0:1; N = 128 ) the CB has a frequen
y!B = 2:62 while the highest mode frequen
y is 
h ' 2. However, we knowthis breather is unstable (a CB), as it must have been formed in the 
haoti
portion of the Hamiltonian phase spa
e, sin
e it was formed from a few ini-tial modes.Within the usual theory the pro
ess then be
omes quite subtle,as it depends on the relatively small 
ontinuous spe
trum of the 
haos.Although the dominant stru
ture is the CB, the mode spe
trum, inwhi
h the CB 
an be de
omposed, plays an important role. For energytransfer from low frequen
y to high frequen
y modes it was shown that thesto
hasti
ity developed in low frequen
y beat os
illations 
ould transfer en-ergy to the high frequen
y modes via the Arnold di�usion me
hanism. The62



key requirement for energy transfer on a time s
ale that is not exponen-tially slow is that the beat os
illation frequen
y be as high or higher thanthe mode (or beat mode) to whi
h the energy is being transfered [9℄. Ina subsequent paper [20℄, it was found that the s
aling with energy densityof the time to rea
h equipartition 
an be predi
ted from that me
hanism.The proportionality Teq (low to high) / (E=N)�3 was predi
ted and 
on-�rmed numeri
ally. In [19℄ the same formalism has been used to numeri
allypredi
t the s
aling Teq (high to low) / (E=N)�2. However, the predi
tedestimate of the time to equipartition was nearly two orders of magnitudeshorter than the numeri
al result. Our 
urrent study of breather dynam-i
s has revealed that the method was not applied 
orre
tly in [19℄ whenthe dominant dynami
s is the breather, rather than the normal modes. Asstated in [19℄ \We might expe
t a signi�
ant underestimate of Teq be
ausei am not expli
itly taking into a

ount the e�e
t of the CB". In fa
t, re-examining the beats in the high frequen
y normal modes indi
ates that thebeat frequen
y is given by 
B = !B � 
h (6.1)i.e. the di�eren
e between the frequen
y lo
ked to the breather and theba
kground free normal modes. The intera
tion is, of 
ourse, with the highfrequen
y normal modes with the breather symmetry, and so we 
an take
h ' 2. For E=50 with !B = 2:62 we �nd, in Fig. 6.1, the dominant beat63



frequen
y 
B ' 0:6, whi
h is 
lose to the value 
B ' 0:62 given by (6.1).

Figure 6.1: Time dependen
e of the energy of normal mode Ej for j = 121and j = 122 during the time interval 50000 s< t < 50050 s when a single
haoti
 breather is well established (E = 50; n = 9).The key assumption in the 
al
ulation is to require, for fast Arnolddi�usion [9℄, that 
B � Æ
l (6.2)where Æ
l is the spread of mode frequen
ies to whi
h energy 
an be trans-ferred. For transfer to low-frequen
y modesÆ
l = �ÆlN (6.3)
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where Æl is the number of low-frequen
y modes whi
h are taken to 
or-respond one-to-one with high-frequen
y modes, Æk , Æl = Æk. To es-timate the energy transfer i transform the Hamiltonian (2.3) to normalmodes, using (2.8) and (2.9), and then introdu
ing the 
anoni
al a
tion-angle variables ( I; � ) through the transformation Qj = q2 Ij = 
j 
os�jand Pj = q2 Ij 
j sin�j we obtainH =Xj 
jIj +  �8N + 8! Xi;j;k;lG(i; j; k; l)q
i
j
k
lIiIjIkIl ang(ijkl)(6.4)where ang(ijkl) � 
os�i 
os�j 
os�k 
os�l. The 
oeÆ
ients G, as 
al
u-lated in [3, 4, 5, 6, 7, 8, 9℄ areG(i; j; k; l) =XP B(i+ j + k + l) (6.5)where P represents the eight permutations of sign of j; k and l and thefun
tion B(x) takes the value 1 if the argument is zero, -1 if the argumentis �2(N + 1), and zero otherwise. The sele
tion rule (6.5) follows from thequatri
 nature of the 
oupling. Taking the derivative of H with respe
t toa high frequen
y angle, we obtain energy transfer from any high frequen
ymode to all a

essible low frequen
y modes in the formdEjdt ' Cj
j  �N ! Cl Æl Ej El (6.6)The quantity ClÆl is redu
ed from the quarti
 sum by the following. Thederivative redu
es the sum by one index, and the sele
tion rule (6.5) by65



a se
ond index. The sum runs over some (Æl)2 modes. Assuming everyquarti
 term in this sum is typi
ally of the same size and taking the phasesto be random, then the e�e
tive number of terms is ClÆl where Cl wasestimated in [20℄ to be Cl = 1=4. The quantity Cj is an eÆ
ien
y of energytransfer by the Arnold di�usion me
hanism, whi
h must be less than 1/2(see [1℄) and we take Cj = 1=4 for de�niteness. Note that both fa
tor Cland Cj were omitted in [19℄ whi
h 
ontributed to the underestimation ofthe equipartition time in that thesis. However, my main reworking of that
al
ulation is a new determination of Æl from (6.2) and (6.3) using 
B from(6.1).From (3.20) we 
al
ulate EB( m) and from (3.8) we approximate !B,both for n = 1 (a single breather). From these results, and using (6.1) weobtain a graph of 
B(EB) as given in Fig. 6.2 on log-log s
ale, whi
h we
ompare with numeri
al results for 
B.We see that over the main range of energies investigated, we �nd, approx-imately, 
B / EB (slope of unity) and furthermore we have an approximatevalue 
B ' 0:2�EB. Substituting this, in (6.2), with the equality, and theresult in (6.3) we have Æl = N� 0:2 � EB (6.7)Sin
e, within my approximation, dEj=Ej = dEB=EB, (6.6) 
an be rewrit-ten, 66



Figure 6.2: Theoreti
al 
urve and numeri
al points illustrate the depen-den
e of beat frequen
y, ln
B, on energy, lnEB, indi
ating a nearly linearproportionality in the energy range investigated.dEBE2B = �0:2 � Cj Cl 
j �N N� El dt (6.8)As in previous work we integrate from EB(initial) to Ed=N , where d = n(init)bis the initial number of os
illators in the breather, and El from zero to E=N .Using the simplest assumption that El(t) = (t = Teq) E=N , a di�usivepro
ess, and taking d ' 5, we obtainTeq ' 80 �5  N�E!2 (6.9)where i have substituted Cj = Cl = 1=4 and 
j = 2. I have obtained the67



s
aling Teq / ��2, as found numeri
ally in [19℄. For � = 0:1; N = 128 andE = 50, Teq ' 3:3 � 104. This is about a fa
tor of �ve shorter than the timeof Teq ' 1:6� 105 s reported in [19℄

Figure 6.3: Time dependen
e of nos
(t). The horizontal lines are theoreti
alasymptotes
There are various arguments to 
on
lude that we have somewhat un-derestimated the time to equipartition. Parti
ularly, we have not expli
itly
onsiderd the 
ompli
ated pro
ess, at intermediate times when the prin
ipleCB has been formed but not de
ayed, and is transfering energy from highfrequen
y modes, that are not part of the breather, to low frequen
y modes,68



Figure 6.4: Time dependen
e of neff (t). The horizontal lines are theoreti
alasymptotesusing the breather as a 
atalyst for the transfer. To see these e�e
ts i re-peat, in a slightly di�erent form from [19℄, 
omputations of nos
 and neff ,given in Fig. 6.3 , 6.4, for E = 50, over a time s
ale in whi
h the variouslonger time s
ale dynami
al pro
esses 
an be seen.The 
oales
en
e time period is seen for t < 2 � 104 s during whi
hnos
 is de
reasing rapidly. This is followed by a period (�t � 105 s) inwhi
h a single breather is �rst in
reasing and then de
reasing slowly asenergy is transferred from high frequen
y modes to low frequen
y modes.Finally there is the more rapid in
rease in nos
, during whi
h time the69



breather energy de
ays, until equipartition is rea
hed at roughly the timet ' 3 � 105 s. An average over 10 initial 
onditions gave the value ofTeq ' 1:6� 105 s, reported in [19℄. The equipartition level at nos
 ' 0:7 andneff ' 0:6 
an be explained by 
u
tuations, as des
ribed in [12℄ and [18℄.There are some subtlties, not reported in those referen
es, whi
h i des
ribein Appendix D. I have 
ontinued the numeri
al 
al
ulation to t = 107 s and�nd the equipartition values to be maintained very 
losely.

70



CHAPTER 7CONCLUSIONSA 
hain of equal masses 
oupled to nearest neighbors by nonlinear springshas a very interesting dynami
s, with quite di�erent behavior depending onwhether the energy is initially in the low or high frequen
y part of the al-lowed spe
trum. In parti
ular, the Fermi-Pasta-Ulam (FPU) system, with aquarti
 hard spring nonlinearity, has been extensively studied. Most of theinvestigations, both theoreti
al and numeri
al, have taken the initial 
ondi-tions to be in a low frequen
y linear mode or modes in whi
h neighboringos
illators are mostly in phase. The pro
ess by whi
h a resonant intera
tionof a few low frequen
y modes 
an lead to lo
al superperiod beat os
illationsthat sto
hasti
, transferring energy to high frequen
y modes by di�usion,has been well studied.In 
ontrast, if the energy is pla
ed in a high frequen
y mode or modes, forwhi
h neighboring os
illators are primarily out of phase, a more 
ompli
ateddynami
s ensues. High frequen
y mode initial 
onditions have phase sym-metry of neighboring os
illators 
lose to that of a lo
alized exa
t breather,71



but have a di�erent amplitude pro�le. The resulting dynami
s 
onsistsof three stages. First there is an initial stage in whi
h the mode breaksup into a number of breather-like stru
tures. Se
ond, on a slower times
ale, these stru
tures 
oales
e into one large unstable stru
ture, 
alled a
haoti
 breather (CB). Sin
e a single large CB 
losely approximates a stablebreather, the �nal de
ay stage, toward equipartition, 
an be very slow.Considerable insight into the behavior of a nonlinear os
illator 
hain,starting from high frequen
y initial 
onditions, 
an be obtained by intro-du
ing an envelope fun
tion for the displa
ements of the os
illators. Theinitial 
onditions for the envelope only 
ontain signi�
ant long wave lengthperturbations. For the envelope fun
tion an expansion is then possible toobtain a nonlinear partial di�erential equation (PDE) whi
h approximatesthe behavior of the dis
rete system. Low-order expansions of this type pro-du
e PDEs that have integrable solutions in the form of envelope solutions,analogous to the solutions produ
ed from low-frequen
y initial 
onditions.However, initial 
onditions 
hosen to be 
lose to a high frequen
y mode ofthe linear system, give envelope pro�les far from those of breathers.For the quarti
 FPU 
hain with �xed ends i have obtained PDE's forthe envelope fun
tion of the dis
rete 
hain, Taylor expanded to fourth orderin the separation between os
illators. The resulting equations have beensolved to obtain nonlinear periodi
 stru
tures similar to isolated breather72



solutions. The relationship between stru
ture amplitude and width havebeen obtained, showing that the width de
reases with the amplitude at lowamplitude and be
omes asymptoti
ally 
onstant at high amplitude, analo-gous to the behavior of isolated stable breathers.I have examined the stability of the nonlinear stru
tures to perturba-tions. The analysis be
omes 
ompl
ated due to spatial variations. Howevera lo
al analysis of the growth rate of the modulational instability indi
atesthat, for wavelengths whi
h satisfy the Taylor expansion, the perturbations
onve
t away faster than they grow, thus e�e
tively stabilizing the modes.This result is in a 
ontrast to the highest mode with periodi
 boundary 
on-ditions (�-mode), whi
h has a uniform amplitude envelope solution whi
hbe
omes unstable at a parti
ular energy. For energies suÆ
iently low that anormal mode initial 
ondition is relatively 
lose to the equilibrium, a linearstability analysis is reasonable. In this 
ase the most unstable uniform ini-tial distribution is below the stability boundary, and therefore stable. Thenormal mode initial 
onditions at intermediate or high energies are far fromthe nonlinear equilibria with the same symmetry , and therefore subje
t tolarge amplitude relaxation os
illations. Underlying stability 
onsiderations,and the proximity of equilibria with other symmetries, lead to breakup ofthe initial symmetry, if the energy is suÆ
iently high. The number of proto-breather peaks established in this pro
ess, starting from a symmetry of a73



few initial peaks, is usually larger than the initial number of peaks, butdepends on the energy. The parti
ular 
ase studied in [19℄, and also inthis thesis, of n = 9 (
 = 120) led to resultsof 8-12 proto-breathers in theenergy range 20 < E < 200. This result 
an be qualitatively understoodby a balan
e between a minimizing of the os
illation amplitude within apeak with a tenden
y for the peaks to remain isolated. The one situation inwhi
h the modulational instability theory 
an be applied to spatially vary-ing equilibrium pro�les is for an initial n relatively large but at not too highan energy. In this 
ase the instability wavelength is long enough that thefor
es driving it 
an be averaged over a number of peaks. The uniform am-plitude instability theory predi
ts the k-value km / q� <  2(x) > and thegrowth rate, sm / � <  2(x) > where the spatial average over x repla
es 2m, as des
ribed in Chapter IV. At high energies km = 1:23 su
h that thepredi
ted wavelength for maximum growth is 
omparable to the breatherwidth and therefore the averaging is not valid.
After a set of quasi-stable proto-breathers are formed, they move slowlyin random dire
tions, 
olliding with one another. In this pro
ess the proto-breathers 
an pass through ea
h other or be re
e
ted, losing or gainingenergy in the intera
tion. On average the large stru
tures absorb energyfrom the smaller ones, as expe
ted from general theoreti
al 
onsiderations.74



The time 
onstant for 
oales
en
e into a single 
haoti
 breather (CB) was es-timated in [22℄ from the relation �B ' (NB �vB)�1 where NB is the breathernumber, � a 
ollision 
ross-se
tion for absorption, and vB a 
hara
teristi
velo
ity. Using the pro
edure, extended to higher energies, i obtained rea-sonable agreement with the numeri
al s
alings of�B / E�1. Furthemorei demonstrated that � � NB(dNB=dt)�1 is essentially 
onstant during thede
ay, su
h that �B / � , in agreement with my theoreti
al predi
tion.To 
al
ulate the s
aling and the time Teq for the CB de
ay, to obtainenergy equipartition, i adopted a theory developed for sto
hasti
 transferof energy from low-frequen
y to high-frequen
y modes by means of 
haoti
beat os
illations [20℄. For transfer in the reverse dire
tion the relevant beatfrequen
y is given by the relation 
B = !B � 
h, where !B is the breatherfrequen
y, !2B ' 4 + 6� 2m, and 
h ' 2 for a high frequen
y mode.Using this s
aling and the theoreti
al relation between E and  m, i predi
tthat Teq / ��2, as found numeri
ally for varying E and 
onstant N , andfurthermore were able to 
al
ulate a value of Teq for E = 50 to withina fa
tor of �ve of the numeri
al value. I 
ould also qualitatively explainthe rather longer times found numeri
ally. The numeri
al equipartitionvalues of nos
 ' 0:7 and neff ' 0:6, for os
illators and modes, respe
tively,agreed with the analyti
 values and furthermore remain quite 
onstant fornumeri
al integration times a fa
tor of 10 longer than required to �rst obtain75



the equipartition values.I 
on
lude that the general pro
ess, by whi
h the energy initially pla
edin a high frequen
y mode rea
hes equipartition among modes, is under-stood. The time-s
ales for the longer-time pro
esses 
an also be 
al
ulated, approximately. The physi
al me
hanism explains why the transfer of en-ergy from high frequen
y to low frequen
y modes is slower than the reversetransfer. It also sheds light on the interesting question of whether nonlin-ear 
haoti
 pro
ess will tend to 
reate 
oherent lo
alized stru
tures. Theanswer, at least within the 
ontext of this study, is that su
h lo
alized stru
-tures 
an form transiently , but the ultimate most-probable state is that ofequipartition among the system modes. I do not address the question ofwhether long-time Poin
are re
urran
es 
an o

ur in su
h nondissipativesystems, but any su
h re
urran
es in high-dimensional systems would bebeyond any numeri
al investigation time.
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APPENDIX AASYMPTOTIC EXPANSION OF I(Y )Expressing (3.11) in terms of y = 6� 2m and making straightforward trans-formations yieldsI(r; y) = 2� Z �=20 d�psin2 � + r2 + 18y� Z �=20 d� sin2 �psin2 � + r2 1(q1 + 9y sin2 � + 1)(A:1)Applying an asymptoti
 expansion at r ! 0 for the �rst integral and puttingr = 0 in the se
ond one givesI(r; y) = 2� ln 4r + 18 y� Z �=20 d� sin�q1 + 9y sin2 � + 1 (A:2)After a few subsitutions the integral is 
al
ulated analyti
ally yielding asymp-toti
 expression for I(r; y)I(r; y) = 2� ln 4r + 6py� ar
sins 9y9y + 1 � 1� ln(9y + 1) (A:3)
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APPENDIX BENERGY OF THE NONLINEAR ENVELOPE SOLUTIONSExpression (2.3) for energy H 
an be rewritten in terms of envelope fun
tion i(t) = (�1)i qi(t):H = N+1Xi=0 " 12 _ i2 +  2i +  i+1 i + �2 (  4i + 3  2i+1 2i + 2  3i+1  i + 2  i+1  3i )#(B:1)Substituting Taylor's expansion (2.14) and 
olle
ting terms proportional todi�erent powers of a yields:H = 1a Z (N+1)a0 dx f 12  2t + 2 2 + 4 �  4 + a (  x + 7 �  3 x) +a22 [   xx + � (7  3 xx + 9  2 2x)℄ +a36 [  xxx + � ( 6   3x + 7  3 xxx + 27  2  x  xx)℄ +a424 [   xxxx + � (7  3  xxxx + 27  2 2xx + 36   2x  xx + 36  2  x  xxx)℄g(B:2)Introdu
ing the dimensionless variable x! x=a, performing an integrationby parts and taking into a

ount boundary 
onditions  (0; t) =  (N +80



1; t) = 0 yieldsH = 112[ 2x(0)�  2x(N + 1)℄ + 124[ x xx(0)�  x xx(N + 1)℄ ++ Z N+10 dx f 12  2t + 2 2 + 4 �  4 � 12 2x � 6�  2 2x ++ 124 [  2xx + � (12  2 2xx + 6   2x  xx)℄g(B:3)Applying this expression for the harmoni
 dependen
e  (x; t) =  (x) 
os!tand averaging over time in a

ordan
e with 
os2 !t = 1=2; 
os4 !t = 3=8givesH = 124[ 2x(0)�  2x(N + 1)℄ + 148[ x xx(0)�  x xx(N + 1)℄ +14 Z N+10 dx f !2 2 + 4 2 �  2x + 6 �  4 � 9�  2 2x ++ 124 [2  2xx + � (18  2 2xx + 9   2x  xx)℄g(B:4)Substituting (3.16) into (B.4) and ignoring terms whi
h originate fromthe forth order a4 terms yields equation (3.20) for the energy of the system.For the 
ase of a strongly nonlinear envelope, putting, r = 0, allows us toexpress energy asE = (2 n  m=q6� )Z(y) (B:5)where y = � 2m andZ(y) = Z �=20 d� (1 + 9 �  2m sin2 �)1=2((3 �  2m sin3 � + 2 sin� ) (B:6)
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The integral Z(y) is 
al
ulated exa
tly, givingZ(y) = 2524 + 98 y + (23 + 234 y + 243 y2) ar
tan( 3 py)72 py (B:7)
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APPENDIX CCONDITIONS OF VALIDITY OF a2-APPROXIMATIONAnalyti
 results in Chapter III are based on the redu
ed form (3.5) in whi
hall terms proportional to a4 and higher powers of a are dropped. I nowdis
uss the validity of this approa
h by examining (3.1) whi
h in
ludes allterms of order a4. Solving (3.1) numeri
ally and 
omparing results with the
orresponding solutions to (3.5) allows us to �nd the domain of validity of(3.5) and, more generally, of the 
ontinuous approximation.Comparing linear terms one 
on
ludes that the redu
ed linear form of(3.1) has one additional term, (1=12) xxxx, with respe
t to linear equation(3.2). Its solutions with zero boundary 
onditions at x = 0 and x = N + 1have the same form as (3.3) but the eigenfrequen
y ! is higher than givenby (3.4),!2 = 4� q2n + q4n = 12; qn = � n=(N + 1) (C:1)due to the fa
tor q4n = 12 whi
h 
orresponds to the next term in Taylor'sexpansion with �n=(N + 1)� 1 (j = 
 = N + 1� n).Despite the 
omplexity of the nonlinear equation (3.1) it has an exa
t83



�rst integral whi
h 
an be obtained by myltiplying (15) by  x and integrat-ing over x. The result of the 
al
ulation gives(�!2 + 4)  2 + (1 + 9 �  2) ( x2 + (1=6)  x  xxx � (1=12)  xx2) ++� (6  4 + 3   x2  xx + (3=8)  x4) = C1 (C:2)Choosing, C1 = 0, we sele
t the 
lass of lo
alized, breather-like solutionsfor a 
hain of os
illators that is in�nitively long (N ! 1). The breatherenvelope fun
tion has one maximum,  m, whi
h is taken to be in the middleof the 
hain at x = 0, whi
h is the origin of the new referen
e frame, and ! 0 at x! �1. Applying (C.2) at x = 0, with  x(0) = 0;  xx(0) < 0,yields an equation for the eigenfrequen
y!2 = 4 + 6 �  2m � (1=12) (1 + 9 �  m2) fxx(0)2 (C:3)where f(x) is the normalized form of  (x). The result is that breatherfrequen
y, 
al
ulated from (3.1) to order a4, is less than the value (3.8),found from the redu
ed (3.5) to order a2. Note that in the 
ase of linearmodes (C.1) the a4 term 
auses an opposite e�e
t of an in
reased frequen
y.After substitution of (C.3) into (C.2) the fa
tor fxx(0) plays the role of aneigenvalue. It is found numeri
ally by applying a shooting method to (C.2)and solving the boundary value problem with the boundary 
onditions, (� 1) =  x(0) = 0. Instead of a boundary 
ondition at in�nity, these
onstraints are applied at some distant points �x0. This is possible due to84



the existan
e of analyti
 asymptoti
 solutions at x! �1 where  (x)! 0and, 
orrespondingly, all � dependent terms in (C.2) 
an be omitted. Thisleads to the exponential pro�le for the breather tail (x)! C exp(��jxj) x! �1 (C:4)where the rate of de
ay, �, is determined by substitution of exponentiallysmall (C.4) into the equation (C.2) with �-terms ignored, obtaining�2 = q36 + 72 �  m2 � fxx(0) (1 + 9 �  2m) � 6 (C:5)Expression (C.5) is valid if ( 1 + 9 �  2m) fxx2(0) < 72 �  2m or, equiva-lently, !2 > 4. It is worth mentioning that there exists an exa
t universalrelationship between ! and � whi
h is valid to all orders of a. Indeed, sin
e (x) ! 0 at x ! �1, this asymptoti
 behavior is des
ribed by the linearversion of the basi
 equation (2.4). Substituting the in�nite Taylor's series(2.14) into this linear equation and assuming an exponential law of de
ay(C.4) yields the universal relation! = 2 
osh �2 (C:6)This expression is based on the summation of all terms in Taylor's expan-sion and, 
orrespondingly, it represents an exa
t result whi
h 
an also beobtained from the dis
reet FPU �-model.The fa
tor fxx(0) is used to estimate the half-width of the bulk envelopefun
tion as � ' jfxx(0)j�1=2, while ��1 des
ribes the half-width of the tail.85



Before numeri
ally solving (C.2) i reprodu
e analyti
 results for a breatherderived from equation (3.5). The se
ond derivative of (3.17) at x = 0 isfxx(0) = � 6 �  2m = (1 + 9 �  2m) (C:7)As is seen from both (C.6) and (3.2) in the a2 approximation, ��1 =(6 �  2m)�1=2. The fa
tor �, 
al
ulated from (C.7), equals ��1 in the smallamplitude limit and be
omes large, � = (3=2)1=2, in the strongly nonlinearregime, indi
ating that, for large amplitude, the breather envelope fun
tionhas a two s
ale stru
ture.

Figure C.1: Dependen
es of !B on breather amplitude,  m; the solid 
urves
orrespond to a4 approximation, the dashed 
urves to a2 approximations.
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Figure C.2: Dependen
es of � and ��1 on breather amplitude,  m; thesolid 
urves 
orrespond to a4 approximation, the dashed 
urves to a2 ap-proximations.More detailed quantitative information obtained by numeri
al integra-tion of (C.2) is presented in Figs. C.1, C.2 whi
h illustrates dependen
es of!, � and ��1 on  m in both a2 and a4 approximations.The breather pro�les des
ribed by (3.17) in a2 approximations and morepre
ise a4 results based on numeri
al integration of (C.2) are illustrated inFig. C.3 for a few typi
al values of  m. Figs. C.1, C.2 , C.3 show thatthere is no signi�
ant di�eren
e between the a2 and a4 approximations upto  m ' 2 whi
h 
an be 
onsidered as the limit of appli
ability of equation(3.5) and the solution in (3.17). Analyti
al small amplitude approximation87



Figure C.3: Comparison of the breather pro�les obtained in a2 approxi-mation (eq. (3.17) - thin solid 
urves); (eq. (3.18) - dashed 
urves) andin a4 approximation (eq. (3.1) - thi
k solid 
urves) for three values of theamplitudes; (a)  m = 0:5, (b)  m = 1, (
)  m = 10.(3.18) is in a good agreement with the numeri
al 
urves at lower amplitudes, m � 0:5.
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APPENDIX DASYMPTOTIC VALUES OF ne� AND nos
 INEQUIPARTITIONThe e�e
tive number of normal modes 
ontaining energy is de�ned by:neff = 1N exp 24� j=NXj=1 ej ln ej35 (D:1)where ej = Ej=Eh are the normalized linear energies of the normal modesEj = 
j(Q2j + P 2j ) (D:2)where Eh = PN1 Ej given by (2.7). Only the quadrati
 terms in the potentialenergy are taken into a

ount in (D.2) so that Eh is not total energy Eand not exa
tly 
onserved during the relaxation. The e�e
tive number ofos
illators 
ontaining energynos
 = 1N exp "� i=NXi=1 ei ln ei# (D:3)is based on the normalized os
illator energies ei = Ei=E whi
h in
ludes allterms so that PN1 Ei is 
onserved exa
tlyEi = 12pi2 + 14[(qi+1 � qi)2 + (qi � qi�1)2℄ + �8 [(qi+1 � qi)4 + (qi � qi�1)4℄ (D:4)
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Depending on the relative variations of energies ei;j, from one mode oros
illator to another, the values of neff or nos
 vary in the range from 1=Nto 1. The upper limit 
orresponds to equipartition state where all ei and ejare the same and equal to 1=N . Numeri
al 
urves plotted in Fig. 6.3, 6.4, forN = 128 and E = 50 give asymptoti
 values at t !1 of neff = 0:61 andnos
 = 0:715, whi
h are lower than the upper limit values nos
 = neff = 1,as expe
ted due to the 
u
tuations of energies ei;j 
aused by intera
tionbetween modes (os
illators). In order to 
al
ulate the e�e
t i introdu
e adeviation Æei;j from equipartitionei;j = ei;j + Æei;j (D:5)Subsituting (D.5) into (D.1) or (D.2), expanding the logarithmi
 fun
tion,whi
h holds both for modes and os
illators, as ln(1 + Æei=ei) = Æei=ei �(1=2)(Æei=ei)2 and performing the summation over i yields
neff = nos
 = 1N exp f�Ne ln e�NÆe2=(2e)g = exp f�NÆe2=(2eg (D:6)Taking e = 1=N and making the assumption of normal statisti
s thatfor ea
h normal mode Æe2 = e2 (this is 
on�rmed by 
al
ulations), givesan asymptoti
 value nos
 = neff = exp(�0:5) = 0:61. This 
al
ulationillustrates why the result does not depend on the number of os
illators if Nis suÆ
iently large and is in apparent good agreement with the numeri
al90



simulation for neff , but not for nos
.For an alternative perspe
tive, from statisti
al me
hani
s we note thatthe sums on the R.H.S. of (D.1), (D.2) 
an be treated as ensemble aver-ages of the fun
tion e ln e (if, of 
ourse, modes (os
illators) are statisti
allyindependent) e ln e = 1N i=NXi=1 ei ln ei (D:7)The L.H.S of (D.7) is 
al
ulated as a mean value of e ln e averaged overa

esible states of the normal mode (os
illator) whi
h are smoothly dis-tributed in the phase spa
e due to energy ex
hange with the rest of theN � 1 modes. They play the role of a heat reservoir while the total energyof the 
ombined system is 
onserved. In this situation a 
anoni
al distribu-tion 
an be used to des
ribe probabilities of the di�erent states of a singlenormal mode (os
illator).For the normal modes the 
anoni
al distribution has a formdP = 1Z expf�Ej(P;Q)T g dP dQ (D:8)where dP is the probability of �nding the mode in the state P , Q, and thepartition fun
tion Z is de�ned by the normalization 
onditionZ = Z 1�1 Z 1�1 exp f�Ej(P;Q)T g dP dQ (D:9)The e�e
tive temperature of the heat bath T is 
hosen su
h that Ej = E=Nwith Ej given by (D.2). Performing the integration over P and Q yields an91



expression for Z. The mean value of Ej is then 
al
ulated asEj = 1Z Z 1�1 Z 1�1 EJ(P;Q) exp f�Ej(P;Q)T gdP dQ � T (D:10)where T = E=N is the e�e
tive temperature. Substituting these results intothe integral for the mean value of e ln e yieldse ln e = 1N Z 10 x ln(x=N) exp(�x) dx (D:11)Multiplying (D.11) by N and subsituting in (D.1) gives an expression forthe asymptoti
 value of neffneff (1) = 1N exp[�N e ln e℄ = 0:6552 (D:12)whi
h does not depend on N . This limit is rather 
lose to numeri
al value0.61 but slightly ex
eeds it. The relative di�eren
e of the order of 0.08
annot be explained by the fa
t that only the quadrati
 part of potentialenergy is taken into a

ount. If E = 50; N = 128 then the relative value ofthe quarti
 term with respe
t to the total energy of the mode is � E=(4N) '0:01 whi
h is too small to explain the di�eren
e observed.In the 
ase of os
illators the 
anoni
al distribution has a more 
om-pli
ated form be
ause the energy of ea
h os
illator i depends formally onfour variables pi; qi�1; qi; qi+1 (see, Eq.(D.4)). Correspondingly, the parti-tion fun
tion and all mean values are de�ned by mulidimensional integrals.Sin
e the potential energy is a fun
tion of di�eren
es qi+1 � qi; qi � qi�1,92



the number of independent variables for integration is redu
ed to 3: x =qi+1 � qi; y = qi � qi�1 and p = pi. Correspondingly, expressions for Z, themean values of Ei, and e ln e take the form
Z = Z 1�1 Z 1�1 Z 1�1 exp f�Ei(p; x; y)T g dp dx dy (D:13)

Ei = 1Z Z 1�1 Z 1�1 Z 1�1Ei(p; x; y) exp f�Ei(p; x; y)T g dp dx dy (D:14)e ln e = 1Z Z 1�1 Z 1�1 Z 1�1  Ei(p; x; y)E ! ln Ei(p; x; y)E ! exp f�Ei(p; x; y)T gdp dx dy(D:15)whereEi(p; x; y) = 12pi2 + 14(x2 + y2) + �8 (x4 + y4) (D:16)The equations are integrated numeri
ally. Given an e�e
tive temperature T ,the number of os
illators N and total energy E, the mean value of energyper os
illator Ei is found from (D.14). Equating Ei to its equipartitionvalue, E=N , yields an appropriate e�e
tive temperature whi
h is then usedto 
al
ulate e ln e. This leads to the asymptoti
 value of nos
(1) = 0:74that slightly ex
eeds the result of numeri
al 
al
ulations.
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